Scholarly Works, Virginia Agricultural Experiment Station
Permanent URI for this collection
VAES faculty are located at 11 Agricultural Research and Extension Centers in Virginia and three colleges at Virginia Tech (CALS, CNRE, and VMRCVM).
Browse
Browsing Scholarly Works, Virginia Agricultural Experiment Station by Department "Eastern Shore Agricultural Research and Extension Center"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Detection of Italian Ryegrass in Wheat and Prediction of Competitive Interactions Using Remote-Sensing and Machine-Learning TechniquesSapkota, Bishwa; Singh, Vijay; Neely, Clark; Rajan, Nithya; Bagavathiannan, Muthukumar V. (MDPI, 2020-09-13)Italian ryegrass (Lolium perenne ssp. multiflorum (Lam) Husnot) is a troublesome weed species in wheat (Triticum aestivum) production in the United States, severely affecting grain yields. Spatial mapping of ryegrass infestation in wheat fields and early prediction of its impact on yield can assist management decision making. In this study, unmanned aerial systems (UAS)-based red, green and blue (RGB) imageries acquired at an early wheat growth stage in two different experimental sites were used for developing predictive models. Deep neural networks (DNNs) coupled with an extensive feature selection method were used to detect ryegrass in wheat and estimate ryegrass canopy coverage. Predictive models were developed by regressing early-season ryegrass canopy coverage (%) with end-of-season (at wheat maturity) biomass and seed yield of ryegrass, as well as biomass and grain yield reduction (%) of wheat. Italian ryegrass was detected with high accuracy (precision = 95.44 ± 4.27%, recall = 95.48 ± 5.05%, F-score = 95.56 ± 4.11%) using the best model which included four features: hue, saturation, excess green index, and visible atmospheric resistant index. End-of-season ryegrass biomass was predicted with high accuracy (R2 = 0.87), whereas the other variables had moderate to high accuracy levels (R2 values of 0.74 for ryegrass seed yield, 0.73 for wheat biomass reduction, and 0.69 for wheat grain yield reduction). The methodology demonstrated in the current study shows great potential for mapping and quantifying ryegrass infestation and predicting its competitive response in wheat, allowing for timely management decisions.
- Spray Deposition on Weeds (Palmer Amaranth and Morningglory) from a Remotely Piloted Aerial Application System and Backpack SprayerMartin, Daniel; Singh, Vijay; Latheef, Mohamed A.; Bagavathiannan, Muthukumar V. (MDPI, 2020-09-19)This study was designed to determine whether a remotely piloted aerial application system (RPAAS) could be used in lieu of a backpack sprayer for post-emergence herbicide application. Consequent to this objective, a spray mixture of tap water and fluorescent dye was applied on Palmer amaranth and ivyleaf morningglory using an RPAAS at 18.7 and 37.4 L·ha−1 and a CO2-pressurized backpack sprayer at a 140 L·ha−1 spray application rate. Spray efficiency (the proportion of applied spray collected on an artificial sampler) for the RPAAS treatments was comparable to that for the backpack sprayer. Fluorescent spray droplet density was significantly higher on the adaxial surface for the backpack sprayer treatment than that for the RPAAS platforms. The percent of spray droplets on the abaxial surface for the RPAAS aircraft at 37.4 L·ha−1 was 4-fold greater than that for the backpack sprayer at 140 L·ha−1. The increased spray deposition on the abaxial leaf surfaces was likely caused by rotor downwash and wind turbulence generated by the RPAAS which caused leaf fluttering. This improved spray deposition may help increase the efficacy of contact herbicides. Test results indicated that RPAASs may be used for herbicide application in lieu of conventional backpack sprayers.