Scholarly Works, Virginia Agricultural Experiment Station
Permanent URI for this collection
VAES faculty are located at 11 Agricultural Research and Extension Centers in Virginia and three colleges at Virginia Tech (CALS, CNRE, and VMRCVM).
Browse
Browsing Scholarly Works, Virginia Agricultural Experiment Station by Department "Food Science and Technology"
Now showing 1 - 11 of 11
Results Per Page
Sort Options
- Assessing the Role of Cyberbiosecurity in Agriculture: A Case StudyDrape, Tiffany A.; Magerkorth, Noah; Sen, Anuradha; Simpson, Joseph; Seibel, Megan M.; Murch, Randall Steven; Duncan, Susan E. (Frontiers, 2021-08-19)Agriculture has adopted the use of smart technology to help meet growing food demands. This increased automation and associated connectivity increases the risk of farms being targeted by cyber-attacks. Increasing frequency of cybersecurity breaches in many industries illustrates the need for securing our food supply chain. The uniqueness of biological data, the complexity of integration across the food and agricultural system, and the importance of this system to the U.S. bioeconomy and public welfare suggests an urgency as well as unique challenges that are not common across all industries. To identify and address the gaps in awareness and knowledge as well as encourage collaborations, Virginia Tech hosted a virtual workshop consisting of professionals from agriculture, cybersecurity, government, and academia. During the workshop, thought leaders and influencers discussed 1) common food and agricultural system challenges, scenarios, outcomes and risks to various sectors of the system; 2) cyberbiosecurity strategies for the system, gaps in workforce and training, and research and policy needs. The meeting sessions were transcribed and analyzed using qualitative methodology. The most common themes that emerged were challenges, solutions, viewpoints, common vocabulary. From the results of the analysis, it is evident that none of the participating groups had available cybersecurity training and resources. Participants were uncertain about future pathways for training, implementation, and outreach related to cyberbiosecurity. Recommendations include creating training and education, continued interdisciplinary collaboration, and recruiting government involvement to speed up better security practices related to cyberbiosecurity.
- Correlation of Salmonella enterica and Listeria monocytogenes in Irrigation Water to Environmental Factors, Fecal Indicators, and Bacterial CommunitiesGu, Ganyu; Strawn, Laura K.; Ottesen, Andrea R.; Ramachandran, Padmini; Reed, Elizabeth A.; Zheng, Jie; Boyer, Renee R.; Rideout, Steven L. (2021-01-08)Outbreaks of foodborne illnesses linked to fresh fruits and vegetables have been key drivers behind a wide breadth of research aiming to fill data gaps in our understanding of the total ecology of agricultural water sources such as ponds and wells and the relationship of this ecology to foodborne pathogens such as Salmonella enterica and Listeria monocytogenes. Both S. enterica and L. monocytogenes can persist in irrigation water and have been linked to produce contamination events. Data describing the abundance of these organisms in specific agricultural water sources are valuable to guide water treatment measures. Here, we profiled the culture independent water microbiota of four farm ponds and wells correlated with microbiological recovery of S. enterica (prevalence: pond, 19.4%; well, 3.3%), L. monocytogenes (pond, 27.1%; well, 4.2%) and fecal indicator testing. Correlation between abiotic factors, including water parameters (temperature, pH, conductivity, dissolved oxygen percentage, oxidation reduction potential, and turbidity) and weather (temperature and rainfall), and foodborne pathogens were also evaluated. Although abiotic factors did not correlate with recovery of S. enterica or L. monocytogenes (p > 0.05), fecal indicators were positively correlated with incidence of S. enterica in well water. Bacterial taxa such as Sphingomonadaceae and Hymenobacter were positively correlated with the prevalence and population of S. enterica, and recovery of L. monocytogenes was positively correlated with the abundance of Rhizobacter and Comamonadaceae (p < 0.03). These data will support evolving mitigation strategies to reduce the risk of produce contamination by foodborne pathogens through irrigation.
- Cyberbiosecurity: A New Perspective on Protecting US Food and Agricultural SystemDuncan, Susan E.; Reinhard, Robert; Williams, Robert C.; Ramsey, A. Ford; Thomason, Wade E.; Lee, Kiho; Dudek, Nancy; Mostaghimi, Saied; Colbert, Edward; Murch, Randall Steven (Frontiers, 2019-03-29)Our national data and infrastructure security issues affecting the "bioeconomy" are evolving rapidly. Simultaneously, the conversation about cyber security of the U.S. food and agricultural system (cyber biosecurity) is incomplete and disjointed. The food and agricultural production sectors influence over 20% of the nation's economy ($ 6.7T) and 15% of U.S. employment (43.3M jobs). The food and agricultural sectors are immensely diverse and they require advanced technologies and efficiencies that rely on computer technologies, big data, cloud-based data storage, and internet accessibility. There is a critical need to safeguard the cyber biosecurity of our bio economy, but currently protections are minimal and do not broadly exist across the food and agricultural system. Using the food safetymanagement Hazard Analysis Critical Control Point systemconcept as an introductory point of reference, we identify important features in broad food and agricultural production and food systems: dairy, food animals, row crops, fruits and vegetables, and environmental resources (water). This analysis explores the relevant concepts of cyber biosecurity from food production to the end product user (such as the consumer) and considers the integration of diverse transportation, supplier, and retailer networks. We describe common challenges and unique barriers across these systems and recommend solutions to advance the role of cyber biosecurity in the food and agricultural sectors.
- Effect of vertical shoot-positioned, smart-dyson, and Geneva double-curtain training systems on Viognier grape and wine compositionZoecklein, Bruce W.; Wolf, T. K.; Pelanne, L.; Miller, M. K.; Birkenmaier, S. S. (American Society for Enology and Viticulture, 2008-03)Viognier grapes grown in northern Virginia and resultant wines were evaluated as a function of training system. Treatments included vertical shoot-positioned (VSP), Smart-Dyson (SD), and Geneva double curtain (GDC), with vines of all treatments spaced 2.4 m apart in 3.0 m wide rows. In addition to increased cluster numbers and crop yield, GDC training generally increased fruit zone sunlight interception and fruit exposure, while it decreased cane pruning weights per meter of cordon, compared with SD and VSP. Crop adjustments were made between bloom and veraison in six seasons, to result in average yields of 10.5 kg/vine (GDC), 9.9 kg/vine (SD), and 6.0 kg/vine (VSP), with the lower SD canopy bearing 30 to 40% less crop than the corresponding upper SD canopy. Crop loads (yield/cane pruning weight) were generally between 4 and 12; GDC crop load approached 20 in three seasons, while SD approached 14 in one. Leaf area per crop ratio was determined one season and exceeded 1.8 m(2)/kg of fruit for all systems. Fruit was harvested at similar Brix values, with differences in berry weight, pH, titratable acidity, and malic and tartaric acids among treatments generally not significant. Volatile compounds were analyzed using headspace solid-phase microextraction GC-MS. Fruit showed consistent differences in linalool, alpha-terpineol, beta-damascenone, and n-hexanol concentrations among training systems. SD had the highest concentration of most free volatiles quantified in both juice and wines, while GDC wines frequently had the highest concentration of phenol-free glycosides. Triangle difference sensory testing demonstrated differences between GDC and SD in wine aroma and flavor and between VSP and SD in flavor. GDC wines generally had higher fruity and floral aromas compared with the other systems.
- The Effect Ultrasound and Surfactants on Nanobubbles Efficacy against Listeria innocua and Escherichia coli O157:H7, in Cell Suspension and on Fresh Produce SurfacesRafeeq, Shamil; Ovissipour, Mahmoudreza (MDPI, 2021-09-12)Removing foodborne pathogens from food surfaces and inactivating them in wash water are critical steps for reducing the number of foodborne illnesses. In this study we evaluated the impact of surfactants on enhancing nanobubbles’ efficacy on Escherichia coli O157:H7, and Listeria innocua removal from spinach leaves. We evaluated the synergistic impact of nanobubbles and ultrasound on these two pathogens inactivation in the cell suspension. The results indicated that nanobubbles or ultrasound alone could not significantly reduce bacteria in cell suspension after 15 min. However, a combination of nanobubbles and ultrasonication caused more than 6 log cfu/mL reduction after 15 min, and 7 log cfu/mL reduction after 10 min of L. innocua and E. coli, respectively. Nanobubbles also enhanced bacterial removal from spinach surface in combination with ultrasonication. Nanobubbles with ultrasound removed more than 2 and 4 log cfu/cm2 of L. innocua and E. coli, respectively, while ultrasound alone caused 0.5 and 1 log cfu/cm2 of L. innocua and E. coli reduction, respectively. No reduction was observed in the solutions with PBS and nanobubbles. Adding food-grade surfactants (0.1% Sodium dodecyl sulfate-SDS, and 0.1% Tween 20), did not significantly enhance nanobubbles efficacy on bacterial removal from spinach surface.
- Effects of prohexadione-calcium on grape yield components and fruit and wine compositionLo Giudice, Danielle; Wolf, Tony K.; Zoecklein, Bruce W. (American Society for Enology and Viticulture, 2004)Prohexadione-calcium (prohexadione-Ca) was applied to field-grown Cabernet franc, Cabernet Sauvignon, Chardonnay, and Seyval to evaluate rates and timing effects on fruit yield components and on fruit and wine composition. Berries per cluster, berry weight, cluster weight, and clusters per shoot in the subsequent season were all decreased by multiple, prebloom plus postbloom, applications to Cabernet Sauvignon and Cabernet franc. Similar reductions in current season components of yield were observed with Seyval. Application (250 mg/L) to single clusters of Cabernet Sauvignon and Chardonnay at bloom, or in the one-to-two-week prebloom period decreased fruit set, whereas applications one to two weeks postbloom reduced berry weight, with no impact on fruit set. Berry weight reduction correlated to increased color intensity (420 nm + 520 nm), total anthocyanins, total phenols, and phenol-free glycosyl-glucose (PFGG) in Cabernet Sauvignon. In a separate experiment, prohexadione-Ca increased Cabernet franc must color intensity, total anthocyanins, and total phenols, despite having, minimal effects on berry weight or crop yield. Aroma and flavor triangle difference tests did not distinguish treatment differences with young Cabernet franc wines. This study of prohexadione-Ca effects on grape reproductive development illustrated that berry set and berry weight were responsive to application timing, with the one-to-two-week period after bloom most sensitive to reductions in berry weight. The concurrent effects on fruit composition were generally positive, while the full impact on wine quality remains equivocal, but worthy of further evaluation.
- Inactivation of Aeromonas hydrophila and Vibrio parahaemolyticus by Curcumin-Mediated Photosensitization and Nanobubble-Ultrasonication ApproachesRafeeq, Shamil; Shiroodi, Setareh; Schwarz, Michael H.; Nitin, Nitin; Ovissipour, Mahmoudreza (MDPI, 2020-09-16)The antimicrobial efficacy of novel photodynamic inactivation and nanobubble technologies was evaluated against Vibrio parahaemolyticus and Aeromonas hydrophila as two important aquatic microbial pathogens. Photodynamic inactivation results showed that LED (470 nm) and UV-A (400 nm)-activated curcumin caused a complete reduction in V. parahaemolyticus at 4 and 22 °C, and a greater than 2 log cfu/mL reduction in A. hydrophila, which was curcumin concentration-dependent (p < 0.05). Furthermore, the photodynamic approach caused a greater than 6 log cfu/mL V. parahaemolyticus reduction and more than 4 log cfu/mL of A. hydrophila reduction in aquaponic water samples (p < 0.05). Our results with the nanobubble technology showed that the nanobubbles alone did not significantly reduce bacteria (p > 0.05). However, a greater than 6 log cfu/mL A. hydrophila reduction and a greater than 3 log cfu/mL of V. parahaemolyticus reduction were achieved when nanobubble technology was combined with ultrasound (p < 0.05). The findings described in this study illustrate the potential of applying photodynamic inactivation and nanobubble–ultrasound antimicrobial approaches as alternative novel methods for inactivating fish and shellfish pathogens.
- Microbial quality of agricultural water in Central FloridaTopalcengiz, Z.; Strawn, Laura K.; Danyluk, M. D. (PLOS, 2017-04-11)The microbial quality of water that comes into the edible portion of produce is believed to directly relate to the safety of produce, and metrics describing indicator organisms are commonly used to ensure safety. The US FDA Produce Safety Rule (PSR) sets very specific microbiological water quality metrics for agricultural water that contacts the harvestable portion of produce. Validation of these metrics for agricultural water is essential for produce safety. Water samples (500 mL) from six agricultural ponds were collected during the 2012/2013 and 2013/2014 growing seasons (46 and 44 samples respectively, 540 from all ponds). Microbial indicator populations (total coliforms, generic Escherichia coli, and enterococci) were enumerated, environmental variables (temperature, pH, conductivity, redox potential, and turbidity) measured, and pathogen presence evaluated by PCR. Salmonella isolates were serotyped and analyzed by pulsed-field gel electrophoresis. Following rain events, coliforms increased up to 4.2 log MPN/100 mL. Populations of coliforms and enterococci ranged from 2 to 8 and 1 to 5 log MPN/100 mL, respectively. Microbial indicators did not correlate with environmental variables, except pH (P<0.0001). The invA gene (Salmonella) was detected in 26/540 (4.8%) samples, in all ponds and growing seasons, and 14 serotypes detected. Six STEC genes were detected in samples: hly (83.3%), fliC (51.8%), eaeA (17.4%), rfbE (17.4%), stx-I (32.6%), stx-II (9.4%). While all ponds met the PSR requirements, at least one virulence gene from Salmonella (invA-4.8%) or STEC (stx-I-32.6%, stx-II-9.4%) was detected in each pond. Water quality for tested agricultural ponds, below recommended standards, did not guarantee the absence of pathogens. Investigating the relationships among physicochemical attributes, environmental factors, indicator microorganisms, and pathogen presence allows researchers to have a greater understanding of contamination risks from agricultural surface waters in the field.
- Strain, Soil-Type, Irrigation Regimen, and Poultry Litter Influence Salmonella Survival and Die-off in Agricultural SoilsBardsley, Cameron; Weller, Daniel L.; Ingram, David T.; Chen, Yuhuan; Oryang, David O.; Rideout, Steven L.; Strawn, Laura K. (2021-03-16)The use of untreated biological soil amendments of animal origin (BSAAO) have been identified as one potential mechanism for the dissemination and persistence of Salmonella in the produce growing environment. Data on factors influencing Salmonella concentration in amended soils are therefore needed. The objectives here were to (i) compare die-off between 12 Salmonella strains following inoculation in amended soil and (ii) characterize any significant effects associated with soil-type, irrigation regimen, and amendment on Salmonella survival and die-off. Three greenhouse trials were performed using a randomized complete block design. Each strain (similar to 4 log CFU/g) was homogenized with amended or non-amended sandy-loam or clay-loam soil. Salmonella levels were enumerated In 25 g samples 0, 0.167 (4 h), 1,2, 4, 7, 10, 14, 21,28, 56, 84, 112, 168, 210, 252, and 336 days post-inoculation (dpi), or until two consecutive samples were enrichment negative. Regression analysis was performed between strain, soil-type, Irrigation, and (i) time to last detect (survival) and (li) concentration at each time-point (die-off rate). Similar effects of strain, irrigation, soil-type, and amendment were identified using the survival and die-off models. Strain explained up to 18% of the variance in survival, and up to 19% of variance In die-off rate. On average Salmonella survived for 129 days in amended soils, however, Salmonella survived, on average, 30 days longer In clay-loam soils than sandy-loam soils [95% Confidence interval (Cl) = 45, 15], with survival time ranging from 84 to 210 days for the individual strains during dally irrigation. When strain- specific associations were investigated using regression trees, S. Javiana and S. Saintpaul were found to survive longer In sandy-loam soil, whereas most of the other strains survived longer In clay-loam soil. Salmonella also survived, on average, 128 days longer when irrigated weekly, compared to daily (Cl = 101, 154), and 89 days longer in amended soils, than non-amended soils (Cl = 61,116). Overall, this study provides insight into Salmonella survival following contamination of field soils by BSAAO. Specifically, Salmonella survival may be strain- specific as affected by both soil characteristics and management practices. These data can assist in risk assessment and strain selection for use in challenge and validation studies.
- Survival of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Herpes Simplex Virus 1 (HSV-1) on Foods Stored at Refrigerated TemperatureDhakal, Janak; Jia, Mo; Joyce, Jonathan D.; Moore, Greyson A.; Ovissipour, Mahmoudreza; Bertke, Andrea S. (MDPI, 2021-05-04)Outbreaks of coronavirus infectious disease 2019 (COVID-19) in meat processing plants and media reports of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection on foods have raised concerns of a public health risk from contaminated foods. We used herpes simplex virus 1, a non-Biosafety Level 3 (non-BSL3) enveloped virus, as a surrogate to develop and validate methods before assessing the survival of infectious SARS-CoV-2 on foods. Several food types, including chicken, seafood, and produce, were held at 4 °C and assessed for infectious virus survival (herpes simplex virus 1 (HSV-1) and SARS-CoV-2) at 0 h, 1 h, and 24 h post-inoculation (hpi) by plaque assay. At all three time points, recovery of SARS-CoV-2 was similar from chicken, salmon, shrimp, and spinach, ranging from 3.4 to 4.3 log PFU/mL. However, initial (0 h) virus recovery from apples and mushrooms was significantly lower than that from poultry and seafood, and infectious virus decreased over time, with recovery from mushrooms becoming undetectable by 24 hpi. Comparing infectious virus titers with viral genome copies confirmed that PCR-based tests only indicate presence of viral nucleic acid, which does not necessarily correlate with the quantity of infectious virus. The survival and high recovery of SARS-CoV-2 on certain foods highlight the importance of safe food handling practices in mitigating any public health concerns related to potentially contaminated foods.
- Utilizing Consumer Perception of Edamame to Guide New Variety DevelopmentCarneiro, Renata C. V.; Duncan, Susan E.; O'Keefe, Sean F.; Yu, Dajun; Huang, Haibo; Yin, Yun; Neill, Clinton L.; Zhang, Bo; Kuhar, Thomas P.; Rideout, Steven L.; Reiter, Mark S.; Ross, W. Jeremy; Chen, Pengyin; Gillen, Anne (2021-01-18)Consumption of edamame (vegetable soybeans) has increased significantly in the U.S. over the last 20 years. Although market demand has been increasing, most edamame is still imported from Asian countries. A team of multistate plant-breeding programs in the mid-Atlantic and Southeast U.S. has focused on developing new breeding lines that grow well in the U.S. and deliver what domestic growers, processors and consumers need and expect from their edamame. In our study, sensory evaluation was used to identify edamame genotypes and sensory attributes preferred by consumers to support breeding selection criteria. In the first year (reported as our "screening study"), 20 edamame genotypes were grown in three locations: Newport, AR, and Blacksburg and Painter, VA. In the second year (reported as our "validation study"), 10 edamame genotypes selected after our screening study were grown in Blacksburg and Painter, VA, Portageville, MO, and Stoneville, MS. In both years of research, untrained participants (adults; vegetable consumers not allergic to soy; N >= 50) used a traditional 9-point acceptability (hedonic) scale (1 = "dislike extremely"; 9 = "like extremely") to evaluate overall-liking, aroma, appearance, taste, and texture, and a 5-point scale (1 = "not sweet," 5 = "extremely sweet") to evaluate sweetness intensity. Next, participants used a check-all-that-apply (CATA) list of selected sensory terms to describe the sensory characteristics of each edamame sample. Overall acceptability of edamame genotypes was significantly different among all genotypes (p < 0.05). Samples described as "bitter," "sour" (flavor) or "starchy" (texture) were associated with lower acceptability scores while "salty" and "sweet" (flavor) were correlated with higher acceptability. Sensory data from the screening study were used to select the best genotypes by use of a defined decision process based on the consumer data. The validation study tested the selection decisions and further supported the genotype choices. Sensory evaluation is a powerful tool to direct breeders to improve market acceptability and develop new edamame genotypes. Both screening and validation studies illustrate the significant role of consumer sensory data in support of genotypes targeted for domestic (U.S.) production.