Scholarly Works, Food Science and Technology
Permanent URI for this collection
Research articles, presentations, and other scholarship
Browse
Browsing Scholarly Works, Food Science and Technology by Department "Food Science and Technology"
Now showing 1 - 20 of 137
Results Per Page
Sort Options
- Accessing Virginia’s Restaurant Market Sector: Fresh Produce Food Safety ConsiderationsVallotton, Amber D.; Battah, Alexandra; Knox, Ryan; Vargo, Adrianna; Archibald, Thomas G.; Boyer, Renee R.; Cook, Natalie E.; Drape, Tiffany A. (Virginia Cooperative Extension, 2017-11-17)Despite the growing demand and support for local food, there can often be significant barriers for growers trying to tap into new markets, given specific food safety expectations, policies, and requirements. This trend is particularly true for institutional buyers, who are often constrained by far-reaching institutional and/or corporate policies. While there are lots of market opportunities in Virginia, navigating the landscape for growers can be daunting, since buyer food safety requirements are not a “one size fits all” standard for all markets. To better understand current expectations and perceptions across multiple market sectors in Virginia, and help producers better align their on-farm practices with these marketplaces, the Fresh Produce Food Safety Team conducted a state-wide market assessment survey in 2015-2016. The purpose of this factsheet is to provide you with the results of that work, especially if you are considering selling produce to restaurants.
- Acetone-butanol-ethanol (ABE) fermentation of soluble and hydrolyzed sugars in apple pomace by Clostridium beijerinckii P260Jin, Qing; Qureshi, Nasib; Wang, Hengjian; Huang, Haibo (2019-05-15)The decreasing supply of fossil fuels and increasing environmental concern of food waste disposal have raised interests in food waste conversation to biofuels such as butanol. Apple pomace, a food processing waste rich in carbohydrates, is a good feedstock for butanol production. The goal of this study is to present and evaluate a process to thoroughly convert apple pomace water soluble sugars (WSS) and hydrolyzed sugars from structural carbohydrates to acetone-butanol-ethanol (ABE) by fermentation. WSS was extracted from apple pomace by hot water. The solid residue was pretreated with acid or alkali followed by enzymatic hydrolysis to obtain acid hydrolyzed sugars (ACHS) or alkali hydrolyzed sugars (ALHS). Finally, WSS, ACHS, ALHS, WSS + ACHS, and WSS + ALHS were used as substrates to produce ABE by Clostridium beijerinckii P260, respectively. Acid and alkali pretreated apple pomace showed significantly (p < 0.05) higher glucose yield after cellulase hydrolysis compared with that of unpretreated apple pomace. Addition of pectinase increased hydrolyzed glucose yield by 27.9%, 26.9%, and 33.0% for acid pretreated sample, alkali pretreated sample, and unpretreated sample, respectively. Fermentation results revealed that inhibitors generated during pretreatment could negatively affect the ABE fermentation rate and titers; however, this negative effect could be alleviated by mixing the hydrolyzed sugars with water soluble sugars. A total of 202.8, 42.1, 41.4, 260.1, and 262.2 g of ABE was produced from each kg of dry apple pomace using WSS, ACHS, ALHS, WSS + ACHS, and WSS + ALHS as the substrates, respectively, based on the mass balance.
- Acid and Volatiles of Commercially-Available Lambic BeersThompson Witrick, Katherine; Duncan, Susan E.; Hurley, E. Kenneth; O'Keefe, Sean F. (MDPI, 2017-10-26)Lambic beer is the oldest style of beer still being produced in the Western world using spontaneous fermentation. Gueuze is a style of lambic beer prepared by mixing young (one year) and older (two to three years) beers. Little is known about the volatiles and semi-volatiles found in commercial samples of gueuze lambic beers. SPME was used to extract the volatiles from nine different brands of lambic beer. GC-MS was used for the separation and identification of the compounds extracted with SPME. The pH and color were measured using standard procedures. A total of 50 compounds were identified in the nine brands. Seventeen of the 50 compounds identified have been previously identified. The compounds identified included a number of different chemical groups such as acids, alcohols, phenols, ketones, aldehydes, and esters. Ethyl acetate, 4-ethylphenol, and 4-ethylguaiacol are known by-products of the yeast, Brettanomyces, which is normally a spoilage microorganism in beer and wine, but important for the flavor characteristics of lambic beer. There were no differences in pH, but there were differences in color between the beer samples.
- Analysis of crab meat volatiles as possible spoilage indicators for blue crab (Callinectes sapidus) meat by gas chromatography-mass spectrometrySarnoski, Paul J.; O'Keefe, Sean F.; Jahncke, Michael L.; Mallikarjunan, Parameswarakumar; Flick, George J. Jr. (Elsevier, 2010-10-01)Traditionally crab meat spoilage has been evaluated using sensory panels. A method was developed using solid-phase microextraction–gas chromatography–mass spectrometry (SPME–GC–MS) to examine the aroma profile of blue crab (Callinectes sapidus) for chemical indicators of spoilage. The chemicals found to correlate best with spoilage were trimethylamine (TMA), ammonia, and indole over a period of 7 days. In addition, chemicals previously not identified in the aroma profile of blue crab were tentatively detected. Scan mode of the mass spectrometer was used to qualitatively determine compounds extracted from the volatile profile of spoiling blue crab by the SPME fiber. Selected ion monitoring (SIM) mode of the mass spectrometer improved resolution, identified compounds at low concentrations, and allowed spoilage related compounds to be detected in one chromatographic run without sample heating. TMA increased linearly. A significant difference in TMA concentrations were found for day 0 and day 4 samples. Indole concentrations corresponded well with sensory and microbial evaluations, in early, mid, and highly spoiled crab meat samples.
- Analysis of salivary fluid and chemosensory functions in patients treated for primary malignant brain tumorsMirlohi, Susan; Duncan, Susan E.; Harmon, M.; Case, D.; Lesser, G.; Dietrich, Andrea M. (Springer, 2015-01-01)Objectives The frequency and causes of chemosensory (taste and smell) disorders in cancer patients remain under-reported. This study examined the impact of cancer therapy on taste/ smell functions and salivary constituents in brain tumor patients. Materials and methods Twenty-two newly diagnosed patients with primary malignant gliomas underwent 6 weeks of combined modality treatment (CMD) with radiation and temozolomide followed by six monthly cycles of temozolomide. Chemosensory functions were assessed at 0, 3, 6, 10, 18, and 30 weeks with paired samples of saliva collected before and after an oral rinse with ferrous-spiked water. Iron (Fe)- induced oxidative stress was measured by salivary lipid oxidation (SLO); salivary proteins, electrolytes, and metals were determined. Parallel salivary analyses were performed on 22 healthy subjects. Results Chemosensory complaints of cancer patients increased significantly during treatment (p=0.04) except at 30 weeks. Fe-induced SLO increased at 10 and 18 weeks. When compared with healthy subjects, SLO, total protein, Na, K, Cu, P, S, and Mg levels, as averaged across all times, were significantly higher (p<0.05), whereas salivary Zn, Fe, and oral pH levels were significantly lower in cancer patients (p<0.05). Neither time nor treatment had a significant impact on these salivary parameters in cancer patients. Conclusions Impact of CMT treatment on chemosensory functions can range from minimal to moderate impairment. Analysis of SLO, metals, and total protein do not provide for reliable measures of chemosensory dysfunctions over time. Clinical relevance Taste and smell functions are relevant in health and diseases; study of salivary constituents may provide clues on the causes of their dysfunctions.
- Antibacterial activity of jalapeño pepper (Capsicum annuum var. annuum) extract fractions against select foodborne pathogensBacon, Karleigh; Boyer, Renee R.; Denbow, Cynthia J.; O'Keefe, Sean F.; Neilson, Andrew P.; Williams, Robert (Wiley, 2017-01)Capsicum annuum fruits have been investigated for antimicrobial activity in a number of studies. Capsaicin or other cinnamic acid pathway intermediates are often suggested to be the antimicrobial component, however there are conflicting results. No research has specifically fractionated jalapeño pepper (Capsicum annuum var. annuum) extract to isolate and identify compound(s) responsible for inhibition. In this study, fractions were collected from jalapeño pepper extracts using reverse-phase HPLC and tested for antibacterial activity using the disk diffusion method. Following initial fractionation, two fractions (E and F) displayed antibacterial activity against all three pathogens (p > .05). Commercial standards were screened to determine when they elude and it was found that capsaicin elutes at the same time as fraction E. Fractions E and F were subject to further HPLC fractionation and antibacterial analysis using two methods. The only fraction to display clear inhibition using both was fraction E1, inhibiting the growth of L. monocytogenes. Fraction E1 was analyzed using HPLC-MS. The resulting mass spectra revealed fraction E1 contained compounds belonging to a group of C. annuum-specific compounds known as capsianosides. Limited research is available on antibacterial activity of capsianosides, and a pure commercial standard is not available. In order to confirm the potential antimicrobial activity of the compound(s) isolated, methods need to be developed to isolate and purify capsianosides specifically from jalapeño peppers.
- Assessing the Role of Cyberbiosecurity in Agriculture: A Case StudyDrape, Tiffany A.; Magerkorth, Noah; Sen, Anuradha; Simpson, Joseph; Seibel, Megan M.; Murch, Randall Steven; Duncan, Susan E. (Frontiers, 2021-08-19)Agriculture has adopted the use of smart technology to help meet growing food demands. This increased automation and associated connectivity increases the risk of farms being targeted by cyber-attacks. Increasing frequency of cybersecurity breaches in many industries illustrates the need for securing our food supply chain. The uniqueness of biological data, the complexity of integration across the food and agricultural system, and the importance of this system to the U.S. bioeconomy and public welfare suggests an urgency as well as unique challenges that are not common across all industries. To identify and address the gaps in awareness and knowledge as well as encourage collaborations, Virginia Tech hosted a virtual workshop consisting of professionals from agriculture, cybersecurity, government, and academia. During the workshop, thought leaders and influencers discussed 1) common food and agricultural system challenges, scenarios, outcomes and risks to various sectors of the system; 2) cyberbiosecurity strategies for the system, gaps in workforce and training, and research and policy needs. The meeting sessions were transcribed and analyzed using qualitative methodology. The most common themes that emerged were challenges, solutions, viewpoints, common vocabulary. From the results of the analysis, it is evident that none of the participating groups had available cybersecurity training and resources. Participants were uncertain about future pathways for training, implementation, and outreach related to cyberbiosecurity. Recommendations include creating training and education, continued interdisciplinary collaboration, and recruiting government involvement to speed up better security practices related to cyberbiosecurity.
- Binding of volatile aroma compounds to can linings with different polymeric characteristicsYou, Xiaorong; O'Keefe, Sean F. (Wiley, 2017)Flavor compounds have been shown to interact with packaging materials either by scalping, the movement of flavorings from the food product to the package, or by flavor release, movement of flavorings from the package to the food. Work has elucidated the parameters important for the scalping of flavor compounds to polyolefin packaging materials, but very little work has been conducted examining the scalping of flavor compounds by can lining materials. Can linings composed of three different polymers, polyolefin, acrylic, epoxy, were studied for binding of volatile flavor compounds (octanal, nonanal, decanal, eugenol, 𝘥-limonene) at room temperature over a 2-week period. Solid phase microextraction (SPME) was used with gas chromatography mass spectrometry to identify and quantify volatile compounds. Flavor compounds were studied at concentrations around 4–1,000 ppb. Fourier transform infrared spectroscopy was used to verify can lining polymer chemistry. Almost complete binding of all five of the volatile compounds studied was observed over 9–14 days at room temperature for each of the can lining chemistries. The number of time data points limited our ability to determine the order and rate constants of binding. This model system appears to be a valuable for investigating flavor binding of polymeric can lining materials.
- Boiling Water Bath Canning – Including Jams, Jellies, and Pickled ProductsBoyer, Renee R.; McKinney, Julie Michelle (Virginia Cooperative Extension, 2011-07-01)Describes the proper equipment, recommended guidelines and recipes that can ensure that food preserved at home is safe and delicious.
- Brown Rice Vinegar as an Olfactory Field Attractant for Drosophila suzukii (Matsumura) and Zaprionus indianus Gupta (Diptera: Drosophilidae) in Cherimoya in Maui, Hawaii, with Implications for Attractant Specificity between Species and Estimation of Relative AbundanceWillbrand, Brittany N.; Pfeiffer, Douglas G. (MDPI, 2019-03-20)Drosophila suzukii (Matsumura) is an agricultural pest that has been observed co-infesting soft-skinned fruits with Zaprionus indianus Gupta. The characterization of olfactory preferences by species is a necessary step towards the development of species-specific attractants. Five olfactory attractants were used to survey the populations of two invasive drosophilids in cherimoya in Maui, Hawaii. The attractants used were apple cider vinegar (ACV), brown rice vinegar (BRV), red wine (RW), apple cider vinegar and red wine (ACV+RW; 60/40), and brown rice vinegar and red wine (BRV+RW; 60/40). For D. suzukii, BRV+RW resulted in more captures than BRV, ACV, and RW, while ACV+RW resulted in more captures than ACV. No differences were observed between BRV+RW and ACV+RW. BRV had greater specificity in attracting D. suzukii compared to ACV, ACV+RW, and RW. For Z. indianus, no significant differences were observed in either the mean captures or specificity for any attractant used. Collectively, these findings demonstrate that (1) BRV and BRV+RW are effective field attractants and (2) D. suzukii has unique olfactory preferences compared to non-target drosophilids, while (3) Z. indianus’ preferences do not appear to vary from non-target drosophilids, and (4) the accuracy of relative abundance is impacted by the specificity of the attractants.
- Bulk and interfacial interactions between hydroxypropyl-cellulose and bile salts: Impact on the digestion of emulsified lipidsZornjak, Jennifer; Liu, Jianzhao; Esker, Alan R.; Lin, Tiantian; Fernández-Fraguas, Cristina (2020-09)Hydroxypropyl-cellulose (HPC) is a surface-active, non-digestible polysaccharide, commonly used in food emulsions as thickener and/or emulsifier. Due to these dual characteristics, HPC is a potential ingredient to modulate lipid digestion. Since bile salts (BS) are key players during lipid digestion, the aim of this work was to investigate the impact that interactions of HPC with BS has on the digestion of emulsified lipids. We studied the effect of two BS species differing in bile-acid moiety, sodium-taurocholate (NaTC) and sodium-taurodeoxycholate (NaTDC). A Quartz-Crystal-Microbalance (QCM-D) was used to evaluate HPC-BS interfacial interactions during the sequential and simultaneous adsorption of both components at a hydrophobic surface, while microDifferential-Scanning-Calorimetry was used to examine bulk interactions. In vitro lipid digestion was studied by using a pH-stat method. Results showed that, under fed-state conditions, NaTDC micelles were more effective at displacing a pre-adsorbed HPC layer from the surface than NaTC monomers. Nevertheless, HPC was resistant to complete displacement by both BS. Additionally, HPC was more susceptible to interact with NaTDC in the bulk, compared to NaTC, which made the adsorption more competitive for NaTDC. The reduced amount of free NaTDC in solution could explain the delayed lipolysis shown by HPC-stabilized emulsions when NaTDC was used to simulate duodenal conditions. These findings show that the delay of lipid digestion by HPC is due to the combined effect of HPC-BS interfacial and bulk interactions, with BS-binding in solution mostly contributing to this effect, and the BS molecular and micellar structure playing essential roles on both situations.
- Can It SafelyBoyer, Renee R. (Virginia Cooperative Extension, 2013-08-28)This publication outlines how to safely preserve low and high-acid foods through pressure canning at home.
- Cetylpyridinium chloride direct spray treatments reduce Salmonella on cantaloupe rough surfacesSaucedo-Alderete, Raúl O.; Eifert, Joseph D.; Boyer, Renee R.; Williams, Robert C.; Welbaum, Gregory E. (2018-08)Cetylpyridinium chloride (CPC) solutions (0, 0.5, or 1.0%) were applied to cantaloupe (Athena and Hale's Best Jumbo cultivars) rind plugs, either before or after inoculation with a broth culture of Salmonella Michigan (10(9) CFU/mL) and held at 37 degrees C for 1 or 24 hr. Rind plugs were diluted, shaken, and sonicated, and solutions were enumerated. Texture quality and color were evaluated over 14 days storage at 4 degrees C after 0 and 1% CPC spray applications. A 0.5 or 1.0% (vol/vol) application of CPC after Salmonella reduced the pathogen levels between 2.34 log CFU/mL and 5.16 log CFU/mL in comparison to the control (p<.01). No differences were observed in the firmness and color of 1% CPC treated cantaloupes. Salmonella concentrations on cantaloupes, treated with 1.0% CPC, were lower after 1 hr storage as compared to 24 hr. And, Salmonella on Athena surfaces were more susceptible to CPC spray treatments than on Hale's Best Jumbo. Practical applicationsCetylpyridinium chloride (CPC) is the active ingredient of some antiseptic oral mouth rinses, and has a broad antimicrobial spectrum with a rapid bactericidal effect on gram-positive pathogens. The spray application of CPC solutions to cantaloupe may reduce the level of Salmonella surface contamination during production from irrigation water and manure fertilizers and, during food processing by contaminated equipment and food handlers. Since the surfaces of cantaloupes are highly rough or irregular, bacteria can easily attach to these surfaces and become difficult to remove. Appropriate postharvest washing and sanitizing procedures are needed that can help control Salmonella and other pathogens on melons, especially on cantaloupes with nested surfaces. A direct surface spray application of CPC may be an alternative antimicrobial postharvest treatment to reduce pathogen contamination of cantaloupe melons, while providing an alternative to chlorine-based solutions.
- Changes in flavor volatile composition of oolong tea after panning during tea processingSheibani, E.; Duncan, Susan E.; Kuhn, D. D.; Dietrich, Andrea M.; Newkirk, J. J.; O'Keefe, Sean F. (2016-05)Panning is a processing step used in manufacturing of some varieties of oolong tea. There is limited information available on effects of panning on oolong tea flavors. The goal of this study was to determine effects of panning on flavor volatile compositions of oolong using Gas Chromatography-Mass Spectrometry (GC-MS) and Gas Chromatography-Olfactometry (GC-O). SDE and SPME techniques were applied for extraction of volatiles in panned and unpanned teas. A total of 190 volatiles were identified from SDE and SPME extractions using GC-MS and GC-O. There were no significant differences (P > 0.05) in aldehyde or terpene contents of unpanned and panned tea. However, alcohols, ketones, acids and esters contents were significantly reduced by panning. Among 12 major volatiles previously used for identification and quality assessment of oolong tea, trans nerolidol, 2- hexenal, benzaldehyde, indole, gernaiol, and benzenacetaldehyde contents were significantly decreased (P < 0.05) by panning. Panning increased (P < 0.05) contents of linalool oxide, cis jasmone, and methyl salicylate. The GC-O study also showed an increase of aroma active compounds with sweet descriptions and decrease of aroma active compounds with fruity and smoky descriptions after panning. Panning significantly changes the volatile compositions of the tea and created new aroma active compounds. Results from this study can be used in quality assessment of panned oolong tea.
- Changes in the gut microbial communities following addition of walnuts to the dietByerley, Lauri O.; Samuelson, Derrick; Blanchard, Eugene; Luo, Meng; Lorenzen, Brittany N.; Banks, Shelia; Ponder, Monica A.; Welsh, David A.; Taylor, Christopher M. (2017-10)Walnuts are rich in omega-3 fatty acids, phytochemicals and antioxidants making them unique compared to other foods. Consuming walnuts has been associated with health benefits including a reduced risk of heart disease and cancer. Dysbiosis of the gut microbiome has been linked to several chronic diseases. One potential mechanism by which walnuts may exert their health benefit is through modifying the gut microbiome. This study identified the changes in the gut microbial communities that occur following the inclusion of walnuts in the diet. Male Fischer 344 rats (n=20) were randomly assigned to one of two diets for as long as 10 weeks: (1) walnut (W), and (2) replacement (R) in which the fat, fiber, and protein in walnuts were matched with corn oil, protein casein, and a cellulose fiber source. Intestinal samples were collected from the descending colon, the DNA isolated, and the V3-V4 hypervariable region of 16S rRNA gene deep sequenced on an Illumina MiSeq for characterization of the gut microbiota. Body weight and food intake did not differ significantly between the two diet groups. The diet groups had distinct microbial communities with animals consuming walnuts displaying significantly greater species diversity. Walnuts increased the abundance of Firmicutes and reduced the abundance of Bacteriodetes. Walnuts enriched the microbiota for probiotic-type bacteria including Lactobacillus, Ruminococcaceae, and Roseburia while significantly reducing Bacteroides and Anaerotruncus. The class Alphaproteobacteria was also reduced. Walnut consumption altered the gut microbial community suggesting a new mechanism by which walnuts may confer their beneficial health effects. (C) 2017 The Authors. Published by Elsevier Inc.
- Chemical Compositions of Edamame Genotypes Grown in Different Locations in the USYu, Dajun; Lin, Tiantian; Sutton, Kemper L.; Lord, Nick; Carneiro, Renata C. V.; Jin, Qing; Zhang, Bo; Kuhar, Thomas P.; Rideout, Steven L.; Ross, W. Jeremy; Duncan, Susan E.; Yin, Yun; Wang, Hengjian; Huang, Haibo (2021-02-12)The consumption of edamame [Glycine max (L.) Merr.] in the US has rapidly increased due to its nutritional value and potential health benefits. In this study, 10 edamame genotypes were planted in duplicates in three different locations in the US-Whitethorne, Virginia (VA), Little Rock, Arkansas (AR), and Painter, VA. Edamame samples were harvested at the R6 stage of the bean development when beans filled 80-90% of the pod cavity. Afterward, comprehensive chemical composition analysis, including sugars, alanine, protein, oil, neutral detergent fiber (NDF), starch, ash, and moisture contents, were conducted on powdered samples using standard methods and the total sweetness was calculated based on the measured sugars and alanine contents. Significant effects of the location were observed on all chemical constituents of edamame (p < 0.05). The average performance of the genotypes was higher in Whitethorne for the contents of free sucrose (59.29 mg/g), fructose (11.42 mg/g), glucose (5.38 mg/g), raffinose (5.32 mg/g), stachyose (2.34 mg/g), total sweetness (78.63 mg/g), and starch (15.14%) when compared to Little Rock and Painter. The highest soluble alanine (2.67 mg/g), NDF (9.00%), ash (5.60%), and moisture (70.36%) contents were found on edamame planted in Little Rock while edamame planted in Painter had the highest crude protein (43.11%) and oil (20.33%) contents. Significant effects of genotype were observed on most of the chemical constituents (p < 0.05) except NDF and raffinose. Among the 10 genotypes, R13-5029 consistently had high sucrose content and total sweetness across the three locations, meanwhile it had relatively high protein and fiber contents. Overall, the results indicate that to breed better edamame genotypes in the US, both genotype and planting location should be taken into considerations.
- Citrus pectin modified by microfluidization and ultrasonication: Improved emulsifying and encapsulation propertiesWang, Wenjun; Feng, Yiming; Chen, Weijun; Adie, Kyle; Liu, Donghong; Yin, Yun (2021-01)In this study, modified citrus pectin treated with a combination of microfluidization and ultrasonication was compared to the original and ultrasonication treated pectin on hydrodynamic diameter, molecular weight, polydispersity, zeta potential, apparent viscosity, Fourier-transform infrared spectroscopy (FTIR), 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical scavenging capacity, scanning electron microscope (SEM), atomic force microscopy (AFM), their emulsifying properties and encapsulation properties. Modified pectin treated with a combination of microfluidization and moderate ultrasonication (MUB) was found to have lowest hydrodynamic diameter (418 nm), molecular weight (237.69 kDa) and polydispersity (0.12), and relatively low apparent viscosity among all pectin samples. Furthermore, it showed significantly higher DPPH radical scavenging capacity than the original pectin although only slightly higher than that of ultrasonication treated one (UB). MUB showed a thin fibrous morphology and decreased degree of branching from SEM and AFM. Emulsion stabilized by MUB had highest centrifugal and thermal stability compared to emulsions stabilized by UB and the original pectin. This could be attributed to higher interfacial loading of MUB (17.90 mg/m(2)) forming more compact interfacial layer observed by confocal laser scanning microscopy (CLSM). Moreover, both MUB and UB exhibited improved encapsulation functionality to protect cholecalciferol (vitamin D-3) from UV degradation compared to the original pectin.
- Common Foodborne Pathogen. Staphylococcus aureusBoyer, Renee R.; McKinney, Julie Michelle (Virginia Cooperative Extension, 2010-09-02)What is Staphylococcus aureus, it's symptoms, who and how one gets intoxicated, and the proper food handling techniques.
- Common Foodborne Pathogens. Clostridium botulinumBoyer, Renee R.; McKinney, Julie Michelle (Virginia Cooperative Extension, 2011-09-03)What is Clostridium botulinum, it's symptoms, and how to prevent it.
- Common Foodborne Pathogens. Listeria monocytogenesBoyer, Renee R.; McKinney, Julie Michelle (Virginia Cooperative Extension, 2009-10-13)What is Listeria monocytogenes, it's symptoms, who and how one gets intoxicated, and the proper food handling techniques.