Department of Mechanical Engineering
Permanent URI for this community
The Virginia Tech Mechanical Engineering Department serves its students, alumni, the Commonwealth of Virginia, and the nation through a variety of academic, research and service activities.
Our missions are to: holistically educate our students for professional leadership as creative problem-solvers in a diverse society, conduct advanced research for societal advancement, train graduate students for scholarly inquiry, and engage with alumni, industry, government, and community partners through outreach activities. In order to produce engineers prepared for success across a range of career paths, our academic program integrates training in engineering principles, critical thinking, hands-on projects, open-ended problem solving, and the essential skills of teamwork, communication, and ethics.
Browse
Browsing Department of Mechanical Engineering by Department "Center for Vehicle Systems and Safety (CVeSS)"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- Dynamic Response Optimization of Complex Multibody Systems in a Penalty Formulation Using Adjoint SensitivityZhu, Yitao; Dopico, Daniel; Sandu, Corina; Sandu, Adrian (ASME, 2015-05-01)
- Imparting motion to a test object such as a motor vehicle in a controlled fashion with improved accuracy(United States Patent and Trademark Office, 2017-05-09)An apparatus imparts motion to a test object such as a motor vehicle in a controlled fashion. A base has mounted on it a linear electromagnetic motor having a first end and a second end, the first end being connected to the base. A pneumatic cylinder and piston combination have a first end and a second end, the first end connected to the base so that the pneumatic cylinder and piston combination is generally parallel with the linear electromagnetic motor. The second ends of the linear electromagnetic motor and pneumatic cylinder and piston combination being commonly linked to a mount for the test object. A control system for the linear electromagnetic motor and pneumatic cylinder and piston combination drives the pneumatic cylinder and piston combination to support a substantial static load of the test object and the linear electromagnetic motor to impart controlled motion to the test object.
- Nonlinear vibrations of microcantilevers subjected to tip-sample interactions: Theory and experimentDelnavaz, Aidin; Mahmoodi, S. Nima; Jalili, Nader; Ahmadian, Mehdi; Zohoor, Hassan (American Institute of Physics, 2009-12-01)Improvement of microcantilever-based sensors and actuators chiefly depends on their modeling accuracy. Atomic force microscopy (AFM) is the most widespread application of microcantilever beam as a sensor, which is usually influenced by the tip-sample interaction force. Along this line of reasoning, vibration of AFM microcantilever probe is analyzed in this paper, along with analytical and experimental investigation of the influence of the sample interaction force on the microcantilever vibration. Nonlinear integropartial equation of microcantilever vibration subject to the tip-sample interaction is then derived and multiple time scales method is utilized to estimate the tip amplitude while it is vibrating near the sample. A set of experiments is performed using a commercial AFM for both resonance and nonresonance modes, and the results are compared with the theoretical results. Hysteresis, instability and amplitude drop can be identified in the experimental curves inside the particle attraction domain. They are likely related to the interaction force between the tip and sample as well as the ever-present water layer during the experiments. A fair agreement is observed between the theoretical simulations and experimental findings, which obviously demonstrates the effectiveness and applicability of the developed model.
- A Novel Double-Piston Magnetorheological Damper for Space Truss Structures Vibration SuppressionWang, Qiang; Ahmadian, Mehdi; Chen, Zhaobo (Hindawi, 2014-07-22)The design, fabrication, and testing of a new double-piston MR damper for space applications are discussed. The design concept for the damper is described in detail. The electromagnetic analysis of the design and the fabrication of the MR damper are also presented. The design analysis shows that the damper meets the weight and size requirements for being included in a space truss structure. The prototype design is tested in a damper dynamometer. The test results show that the damper can provide nearly 80 N of damping force at its maximum velocity and current. The test results also show that the seal drag could contribute significantly to the damping forces. Additionally, the test results indicate that both the work by the damper and damping force increase rapidly with increasing current at lower currents and taper off at higher currents as the damper starts to saturate. The damper force versus velocity plots show hysteresis in both pre- and postyield regions and asymmetric forces in jounce and rebound. A model is proposed for representing the force-displacement, force-velocity, and asymmetric forces observed in test results. A comparison of the modeling results and test data indicates that the model accurately represents the force characteristics of the damper.
- A Review on Eigenstructure Assignment Methods and Orthogonal Eigenstructure Control of Structural VibrationsRastgaar, Mohammad; Ahmadian, Mehdi; Southward, Steve (Hindawi, 2009-01-01)This paper provides a state-of-the-art review of eigenstructure assignment methods for vibration cancellation. Eigenstructure assignment techniques have been widely used during the past three decades for vibration suppression in structures, especially in large space structures. These methods work similar to mode localization in which global vibrations are managed such that they remain localized within the structure. Such localization would help reducing vibrations more effectively than other methods of vibration cancellation, by virtue of confining the vibrations close to the source of disturbance. The common objective of different methods of eigenstructure assignment is to provide controller design freedom beyond pole placement, and define appropriate shapes for the eigenvectors of the systems. These methods; however, offer a large and complex design space of options that can often overwhelm the control designer. Recent developments in orthogonal eigenstructure control offers a significant simplification of the design task while allowing some experience-based design freedom. The majority of the papers from the past three decades in structural vibration cancellation using eigenstructure assignment methods are reviewed, along with recent studies that introduce new developments in eigenstructure assignment techniques.
- An SMA Passive Ankle Foot Orthosis: Design, Modeling, and Experimental EvaluationDeberg, Liberty; Taheri Andani, Masood; Hosseinipour, Milad; Elahinia, Mohammad (Hindawi, 2014-06-02)Shape memory alloys (SMAs) provide compact and effective actuation for avariety of mechanical systems. In this work, the distinguished superelastic behavior of these materials is utilized to develop a passive ankle foot orthosis to address the drop foot disability. Design, modeling, and experimental evaluation of an SMA orthosis employed in an ankle foot orthosis (AFO) are presented in this paper. To evaluate the improvements achieved with this new device, a prototype is fabricated and motion analysis is performed on a drop foot patient. Results are presented to demonstrate the performance of the proposed orthosis.