Journal Articles, Hindawi Press
Permanent URI for this collection
Browse
Browsing Journal Articles, Hindawi Press by Department "Biomedical Engineering and Mechanics"
Now showing 1 - 20 of 20
Results Per Page
Sort Options
- Acceleration Feedback-Based Active and Semi-Active Seismic Response Control of Rail-Counterweight Systems of ElevatorsSingh, Rildova; Singh, Mahendra P. (Hindawi, 2005-01-01)Based on the observations in the past earthquake events, the traction elevators in buildings are known to be vulnerable to earthquake induced ground motions. Among several components of an elevator, the counterweight being heaviest is also known to be more susceptible than others. The inertial effects of the counterweight can overstress the guide rails on which it moves. Here we investigate to use the well-known acceleration feedback-based active and semi-active control methods to reduce stresses in the rails. The only way a control action can be applied to a moving counterweight-rail system is through a mass damper placed in the plane of the counterweight. For this, a part of the counterweight mass can be configured as a mass damper attached to a small actuator for an active scheme or to a magneto-rheological damper for a semi-active scheme. A comprehensive numerical study is conducted to evaluate the effectiveness of the proposed configuration of control system. It is observed that the two control schemes are effective in reducing the stress response by about 20 to 25% and improve the system fragility over a good range of seismic intensities.
- Anti-Swing Control of Gantry and Tower Cranes Using Fuzzy and Time-Delayed Feedback with Friction CompensationOmar, Hanafy M.; Nayfeh, Ali H. (Hindawi, 2005-01-01)We designed a feedback controller to automate crane operations by controlling the load position and its swing. First, a PD tracking controller is designed to follow a prescribed trajectory. Then, another controller is added to the control loop to damp the load swing. The anti-swing controller is designed based on two techniques: a time-delayed feedback of the load swing angle and an anti-swing fuzzy logic controller (FLC). The rules of the FLC are generated by mapping the performance of the time-delayed feedback controller. The same mapping method used for generating the rules can be applied to mimic the performance of an expert operator. The control algorithms were designed for gantry cranes and then extended to tower cranes by considering the coupling between the translational and rotational motions. Experimental results show that the controller is effective in reducing load oscillations and transferring the load in a reasonable time. To experimentally validate the theory, we had to compensate for friction. To this end, we estimated the friction and then applied a control action to cancel it. The friction force was estimated by assuming a mathematical model and then estimating the model coefficients using an off-line identification technique, the method of least squares (LS).
- Assessment of Deep Partial Thickness Burn Treatment with Keratin Biomaterial Hydrogels in a Swine ModelPoranki, D.; Goodwin, C.; Van Dyke, M. (Hindawi, 2016-01-01)Partial thickness burns can advance to full thickness after initial injury due to inadequate tissue perfusion and increased production of inflammatory cytokines, which has been referred to as burn wound progression. In previous work, we demonstrated that a keratin biomaterial hydrogel appeared to reduce burn wound progression. In the present study, we tested the hypothesis that a modified keratin hydrogel could reduce burn wound progression and speed healing. Standardized burn wounds were created in Yorkshire swine and treated within 30 minutes with keratin hydrogel (modified and unmodified), collagen hydrogel, or silver sulfadiazine (SSD). Digital images of each wound were taken for area measurements immediately prior to cleaning and dressing changes. Wound tissue was collected and assessed histologically at several time points. Wound area showed a significant difference between hydrogels and SSD groups, and rates of reepithelialization at early time points showed an increase when keratin treatment was used compared to both collagen and SSD. A linear regression model predicted a time to wound closure of approximately 25 days for keratin hydrogel while SSD treatment required 35 days. There appeared to be no measurable differences between the modified and unmodified formulations of keratin hydrogels.
- Axisymmetric Natural Frequencies of Statically Loaded Annular PlatesAbdel-Rahman, Eihab M.; Faris, Waleed F.; Nayfeh, Ali H. (Hindawi, 2003-01-01)We present a numerical procedure to solve the axisymmetric vibration problem of statically loaded annular plates. We use the von Kármán nonlinear plate model to account for large deformations and study the effect of static deflections on the natural frequencies and mode shapes for six combinations of boundary conditions. The shooting method is used to solve the resulting eigenvalue problem. Our results show that static deformations have a significant effect on the natural frequencies and small effect on the mode shapes of the plate. Further, the results show that the presence of in-plane stresses has a significant effect on the natural frequencies.
- Control of Limit Cycle Oscillations of a Two-Dimensional Aeroelastic SystemGhommem, Mehdi; Nayfeh, Ali H.; Hajj, Muhammad R. (Hindawi Publishing Corporation, 2010)Linear and nonlinear static feedback controls are implemented on a nonlinear aeroelastic system that consists of a rigid airfoil supported by nonlinear springs in the pitch and plunge directions and subjected to nonlinear aerodynamic loads. The normal form is used to investigate the Hopf bifurcation that occurs as the freestream velocity is increased and to analytically predict the amplitude and frequency of the ensuing limit cycle oscillations (LCO). It is shown that linear control can be used to delay the flutter onset and reduce the LCO amplitude. Yet, its required gains remain a function of the speed. On the other hand, nonlinear control can be efficiently implemented to convert any subcritical Hopf bifurcation into a supercritical one and to significantly reduce the LCO amplitude.
- Control of Rotary Cranes Using Fuzzy LogicAl-mousa, Amjed A.; Nayfeh, Ali H.; Kachroo, Pushkin (Hindawi, 2003-01-01)Rotary cranes (tower cranes) are common industrial structures that are used in building construction, factories, and harbors. These cranes are usually operated manually. With the size of these cranes becoming larger and the motion expected to be faster, the process of controlling them has become difficult without using automatic control methods. In general, the movement of cranes has no prescribed path. Cranes have to be run under different operating conditions, which makes closed-loop control attractive.In this work a fuzzy logic controller is introduced with the idea of “split-horizon”; that is, fuzzy inference engines (FIE) are used for tracking the position and others are used for damping the load oscillations. The controller consists of two independent sub-controllers: radial and rotational. Each of these controllers has two fuzzy inference engines (FIE). Computer simulations are used to verify the performance of the controller. Three simulation cases are presented. In the first case, the crane is operated in the gantry (radial) mode in which the trolley moves along the jib while the jib is fixed. In the second case (rotary mode), the trolley moves along the jib and the jib rotates. In the third case, the trolley and jib are fixed while the load is given an initial disturbance. The results from the simulations show that the fuzzy controller is capable of keeping the load-oscillation angles small throughout the maneuvers while completing the maneuvers in relatively reasonable times.
- Derivation of Equations for Flexible Multibody Systems in Terms of Quasi-Coordinates from the Extended Hamilton’s PrincipleMeirovitch, L. (Hindawi, 1993-01-01)Early derivations of the equations of motion for single rigid bodies, single flexible bodies, and flexible multibody systems in terms of quasi-coordinates have been carried out in two stages. The first consists of the use of the extended Hamilton’s principle to derive standard Lagrange’s equations in terms of generalized coordinates and the second represents a transformation of the Lagrange’s equations to equations in terms of quasi-coordinates. In this article, hybrid (ordinary and partial) differential equations for flexible multibody systems are derived in terms of quasi-coordinates directly from the extended Hamilton's principle. The approach has beneficial implications in an eventual spatial discretization of the problem.
- Distinguishing the Unique Neuropathological Profile of Blast PolytraumaHubbard, W. Brad; Greenberg, Shaylen; Norris, Carly; Eck, Joseph; Lavik, Erin; VandeVord, Pamela J. (Hindawi, 2017-03-23)Traumatic brain injury sustained after blast exposure (blast-induced TBI) has recently been documented as a growing issue for military personnel. Incidence of injury to organs such as the lungs has decreased, though current epidemiology still causes a great public health burden. In addition, unprotected civilians sustain primary blast lung injury (PBLI) at alarming rates. Often, mild-to-moderate cases of PBLI are survivable with medical intervention, which creates a growing population of survivors of blast-induced polytrauma (BPT) with symptoms from blast-induced mild TBI (mTBI). Currently, there is a lack of preclinical models simulating BPT, which is crucial to identifying unique injury mechanisms of BPT and its management. To meet this need, our group characterized a rodent model of BPT and compared results to a blast-induced mTBI model. Open field (OF) performance trials were performed on rodents at 7 days after injury. Immunohistochemistry was performed to evaluate cellular outcome at day seven following BPT. Levels of reactive astrocytes (GFAP), apoptosis (cleaved caspase-3 expression), and vascular damage (SMI-71) were significantly elevated in BPT compared to blast-induced mTBI. Downstream markers of hypoxia (HIF-1α and VEGF) were higher only after BPT. This study highlights the need for unique therapeutics and prehospital management when handling BPT.
- Dynamic Analysis of Multilayers Based MEMS ResonatorsOuakad, Hassen M.; Alofi, Abdulrahman M.; Nayfeh, Ali H. (Hindawi, 2017-01-05)The dynamic behavior of a microelectromechanical system (MEMS) parallel and electrically coupled double-layers (microbeams) based resonator is investigated. Two numerical methods were used to solve the dynamical problem: the reduced-order modeling (ROM) and the perturbation method. The ROM was derived using the so-called Galerkin expansion with considering the linear undamped mode shapes of straight beam as the basis functions. The perturbation method was generated using the method of multiple scales by direct attack of the equations of motion. Dynamic analyses, assuming the above two numerical methods were performed, and a comparison of the results showed good agreement. Finally, a parametric study was performed using the perturbation on different parameters and the results revealed different interesting features, which hopefully can be useful for some MEMS based applications.
- Dynamic Behavior of Elastically Tailored Rotating Blades Modeled as Pretwisted Thin-Walled Beamsand Incorporating Adaptive CapabilitiesSong, Ohseop S.; Oh, Sang-Yong; Librescu, Liviu (Hindawi, 2002-01-01)
- Dynamic Response of Cantilevered Thin-Walled Beams to Blast and Sonic-Boom LoadingsLibrescu, Liviu; Na, Sungsoo (Hindawi, 1998-01-01)
- Influence of wall waviness on friction and pressure drop in channelsVajravelu, K.; Nayfeh, Ali H. (Hindawi, 1981-01-01)An attention has been given to investigate the flow behavior of anincompressible viscous fluid confined in horizontal wavy channels and set in motion due to the movement of the upper wall and the pressure differences. The governing equations have been solved analytically as well as numerically subject to the relevant boundary conditions by assuming that the solution consists of two parts: a mean part and a disturbance or perturbed part. For small and moderate Reynolds numbers, the analytical solution for the perturbed part has been found to be in good agreement with the numerical one. The effects of Reynolds number, the pressure gradient parameter, and the undulation wavenumber on friction and pressure drop are found to be quite significant. In addition to the flow behavior for both long and short waves and for large Reynolds numbers, the effect of the wall waviness on friction and pressure drop has been examined forany arbitrary amplitude of the wavy wall.
- Investigation of Subcombination Internal Resonances in Cantilever BeamsArafat, Haider N.; Nayfeh, Ali H. (Hindawi, 1998-01-01)Activation of subcombination internal resonances in transversely excited cantilever beams is investigated. The effect of geometric and inertia nonlinearities, which are cubic in the governing equation of motion, is considered. The method of time-averaged Lagrangian and virtual work is used to determine six nonlinear ordinary-differential equations governing the amplitudes and phases of the three interacting modes. Frequency- and force-response curves are generated for the case ω ≈ ω4 ≈ 1/2(ω2 + ω5). There are two possible responses: single-mode and three-mode responses. The single-mode periodic response is found to undergo supercritical and subcritical pitchfork bifurcations, which result in three-mode interactions. In the case of three-mode responses, there are conditions where the low-frequency mode dominates the response, resulting in high-amplitude quasiperiodic oscillations.
- Neural Network Identification and Control of a Parametrically Excited Structural Dynamic Model of an F-15 Tail SectionEl-Badawy, Ayman A.; Nayfeh, Ali H.; VanLandingham, Hugh F. (Hindawi, 2000-01-01)We investigated the design of a neural-network-based adaptive control system for a smart structural dynamic model of the twin tails of an F-15 tail section. A neural network controller was developed and tested in computer simulation for active vibration suppression of the model subjected to parametric excitation. First, an emulator neural network was trained to represent the structure to be controlled and thus used in predicting the future responses of the model. Second, a neurocontroller to determine the necessary control action on the structure was developed. The control was implemented through the application of a smart material actuator. A strain gauge sensor was assumed to be on each tail. Results from computer-simulation studies have shown great promise for control of the vibration of the twin tails under parametric excitation using artificial neural networks.
- Nonlinear Response of Cantilever Beams to Combination and Subcombination ResonancesNayfeh, Ali H.; Arafat, Haider N. (Hindawi, 1998-01-01)The nonlinear planar response of cantilever metallic beams to combination parametric and external subcombination resonances is investigated, taking into account the effects of cubic geometric and inertia nonlinearities. The beams considered here are assumed to have large length-to-width aspect ratios and thin rectangular cross sections. Hence, the effects of shear deformations and rotatory inertia are neglected. For the case of combination parametric resonance, a two-mode Galerkin discretization along with Hamilton’s extended principle is used to obtain two second-order nonlinear ordinary-differential equations of motion and associated boundary conditions. Then, the method of multiple scales is applied to obtain a set of four first-order nonlinear ordinary-differential equations governing the modulation of the amplitudes and phases of the two excited modes. For the case of subcombination resonance, the method of multiple scales is applied directly to the Lagrangian and virtual-work term. Then using Hamilton’s extended principle, we obtain a set of four first-order nonlinear ordinary-differential equations governing the amplitudes and phases of the two excited modes. In both cases, the modulation equations are used to generate frequency- and force-response curves. We found that the trivial solution exhibits a jump as it undergoes a subcritical pitchfork bifurcation. Similarly, the nontrivial solutions also exhibit jumps as they undergo saddle-node bifurcations.
- Parametrically Excited Nonlinear Two-Degree-of-Freedom Systems with Repeated Natural FrequenciesNayfeh, Ali H.; Chin, C.; Mook, Dean T. (Hindawi, 1995-01-01)The method of normal forms is used to study the nonlinear response of two-degree-of-freedom systems with repeated natural frequencies and cubic nonlinearity to a principal parametric excitation. The linear part of the system has a nonsemisimple one-to-one resonance. The character of the stability and various types of bifurcation including the formation of a homoclinic orbit are analyzed. The results are applied to the flutter of a simply supported panel in a supersonic airstream.
- A Review of Pediatric Lower Extremity Data for Pedestrian Numerical Modeling: Injury Epidemiology, Anatomy, Anthropometry, Structural, and Mechanical PropertiesMeng, Yunzhu; Untaroiu, Costin D. (Hindawi, 2018-09-04)Pedestrian injuries are the fourth leading cause of unintentional injury-related death among children aged 1 to 19. The lower extremity represents the most frequently injured body region in car-to-pedestrian accidents. The goal of this study was to perform a systematic review of the data related to pedestrian lower extremity injuries, anatomy, anthropometry, structural, and mechanical properties, which can be used in the development of new pediatric computational models. The study began with a review of epidemiologic data related to pediatric pedestrian accidents. Anatomy of the child lower extremity and age-related anthropometry data were presented as well. Then, both the mechanical and structural properties of the lower extremity main components (e.g., bones, cartilages, knee ligaments, muscles, tendons, and growth plates) available in literature were summarized. The study concluded with a brief description of current child pedestrian models, which included a discussion about their limitations. We believe that data included in this review study can help in improving the biofidelity of current child models and support the development and validation of new child models used by safety researchers for protection of pediatric population.
- Review: Biofunctionalized Quantum Dots in Biology and MedicineMazumder, Sonal; Dey, Rajib; Mitra, M. K.; Mukherjee, Saikat; Das, G. C. (Hindawi, 2009-11-04)Quantum dot (QD) nanocrystals which have important optical properties, in particular, the wavelength of their fluorescence, depend strongly on their size. Colloidal QDs once dispersed in a solvent are quite interesting fluorescence probes for all types of labelling studies because of their reduced tendency to photo bleach. In this review, we will give an overview on how QDs have been used so far in cell biology. In particular, we will discuss the biologically relevant properties of QDs and focus on four topics: labeling of cellular structures and receptors with QDs, incorporation of QDs by living cells, tracking the path and the fate of individual cells using QD labels, and QDs as contrast agents. QDs are seen to be much better in terms of efficacy over radioisotopes in tracing medicine in vivo. They are rapidly being applied to existing and emerging technologies but here this review deals with a comprehensive compilation of the biological relevance of quantum dots. It covers important information from 1999 till 2008 with few from 1982 to 1997.
- Thermally Induced Principal Parametric Resonance in Circular PlatesNayfeh, Ali H.; Faris, Waleed F. (Hindawi, 2002-01-01)We consider the problem of large-amplitude vibrations of a simply supported circular flat plate subjected to harmonically varying temperature fields arising from an external heat flux (aeroheating for example). The plate is modeled using the von Karman equations. We used the method of multiple scales to determine an approximate solution for the case in which the frequency of the thermal variations is approximately twice the fundamental natural frequency of the plate; that is, the case of principal parametric resonance. The results show that such thermal loads produce large-amplitude vibrations, with associated multi-valued responses and subcritical instabilities.
- Vibration and Dynamic Response Control of Nonuniform Composite Rotating BladesNa, Sungsoo; Librescu, Liviu; Rim, Sung-Nam; Yoon, Gwon-Chan (Hindawi, 2006-05-08)This paper addresses the free vibration, dynamic response, and theactive control of composite rotating pretwisted blades modeled asnonuniform thin-walled beams, fixed at the hub at a settingangle, and incorporating piezoelectrically induced dampingcapabilities. In this sense, a distributed piezoelectric actuatorsystem activated through the application of an out-of-phaseelectrical current is used to suppress the dynamic response of therotating beam subjected to a Heaviside pulse. The blade modelincorporates nonclassical effects such as transverse shear,secondary warping, and rotary inertias, and includes thecentrifugal and Coriolis force fields. A velocity feedback controllaw relating the piezoelectrically induced bending moment at thebeam tip with appropriately selected kinematical responsequantities is used, and the beneficial effects of itsimplementation upon the closed loop eigenvibration and dynamiccharacteristics of the blade are highlighted.