Scholarly Works, Physics
Permanent URI for this collection
Research articles, presentations, and other scholarship
Browse
Browsing Scholarly Works, Physics by Department "Center for Neutrino Physics"
Now showing 1 - 20 of 62
Results Per Page
Sort Options
- The 2010 Interim Report of the Long-Baseline Neutrino Experiment Collaboration Physics Working GroupsCollaboration, TLBNE; Akiri, T.; Allspach, D.; Andrews, M.; Arisaka, K.; Arrieta-Diaz, E.; Artuso, M.; Bai, X.; Balantekin, A. B.; Baller, B.; Barletta, W. A.; Barr, G.; Bass, M.; Beck, A.; Becker, B.; Bellini, V.; Benhar, Omar; Berger, B. E.; Bergevin, M.; Berman, E.; Berns, H.; Bernstein, A.; Beroz, F.; Bhatnagar, V.; Bhuyan, B.; Bionta, R.; Bishai, M.; Blake, A.; Blaufuss, E.; Bleakley, B.; Blucher, E.; Blusk, S.; Boehnlein, D.; Bolton, T.; Brack, J.; Bradford, R.; Breedon, R.; Bromberg, C.; Brown, R.; Buchanan, N.; Camilleri, Leslie; Campbell, M.; Carr, Rachel E.; Carminati, G.; Chen, A.; Chen, H.; Cherdack, D.; Chi, C.; Childress, S.; Choudhary, B.; Church, E.; Cline, D.; Coleman, S.; Corey, R.; D'Agostino, M. V.; Davies, G. S.; Dazeley, S.; Jong, J. D.; DeMaat, B.; Demuth, D.; Dighe, A.; Djurcic, Zelimir; Dolph, J.; Drake, G.; Drozhdin, A.; Duan, H.; Duyang, H.; Dye, S.; Dykhuis, T.; Edmunds, D.; Elliott, S.; Enomoto, S.; Escobar, C. O.; Felde, J.; Feyzi, F.; Fleming, B.; Fowler, J.; Fox, W.; Friedland, A.; Fujikawa, B. K.; Gallagher, H.; Garilli, G.; Garvey, G. T.; Gehman, V. M.; Geronimo, G. D.; Gill, R.; Goodman, M.; Goon, J.; Gorbunov, D.; Gran, R.; Guarino, V.; Guarnaccia, E.; Guenette, R.; Gupta, P.; Habig, A.; Hackenburg, R. W.; Hahn, A.; Hahn, R.; Haines, T.; Hans, S.; Harton, J.; Hays, S.; Hazen, E.; He, Q.; Heavey, A.; Heeger, K.; Hellauer, R.; Himmel, A.; Horton-Smith, Glenn A.; Howell, J.; Huber, Patrick; Hurh, P.; Huston, J.; Hylen, J.; Insler, J.; Jaffe, D.; James, C.; Johnson, C.; Johnson, M.; Johnson, R.; Johnson, W.; Johnston, W.; Johnstone, J.; Jones, B.; Jostlein, H.; Junk, T.; Junnarkar, S.; Kadel, R.; Kafka, T.; Kaminski, D.; Karagiorgi, Georgia S.; Karle, A.; Kaspar, J.; Katori, T.; Kayser, B.; Kearns, E.; Kettell, S. H.; Khanam, F.; Klein, J.; Kneller, J.; Koizumi, G.; Kopp, J.; Kopp, S.; Kropp, W.; Kudryavtsev, V. A.; Kumar, A.; Kumar, J.; Kutter, T.; Lackowski, T.; Lande, K.; Lane, C.; Lang, K.; Lanni, F.; Lanza, R.; Latorre, T.; Learned, J.; Lee, D.; Lee, K.; Li, Y.; Linden, S.; Ling, J.; Link, Jonathan M.; Littenberg, L.; Loiacono, L.; Liu, T.; Losecco, J.; Louis, W.; Lucas, P.; Lunardini, C.; Lundberg, B.; Lundin, T.; Makowiecki, D.; Malys, S.; Mandal, S.; Mann, A.; Mantsch, P.; Marciano, W. J.; Mariani, Camillo; Maricic, Jelena; Marino, A.; Marshak, M.; Maruyama, R.; Matthews, J.; Matsuno, S.; Mauger, C.; McCluskey, E.; McDonald, K.; McFarland, K. S.; McKeown, R.; McTaggart, R.; Mehdiyev, R.; Melnitchouk, W.; Meng, Y.; Mercurio, B.; Messier, M.; Metcalf, W.; Milincic, R.; Miller, W.; Mills, G.; Mishra, S.; MoedSher, S.; Mohapatra, D.; Mokhov, N.; Moore, C.; Morfin, J.; Morse, W.; Moss, A.; Mufson, S.; Musser, J.; Naples, D.; Napolitano, J.; Newcomer, M.; Norris, B.; Ouedraogo, S.; Page, B.; Pakvasa, S.; Paley, J.; Paolone, V.; Papadimitriou, V.; Parsa, Z.; Partyka, K.; Pavlovic, Z.; Pearson, C.; Perasso, S.; Petti, R.; Plunkett, R.; Polly, C. C.; Pordes, S.; Potenza, R.; Prakash, A.; Prokofiev, O.; Qian, X.; Raaf, J.; Radeka, V.; Raghavan, R.; Rameika, R.; Rebel, B.; Rescia, S.; Reitzner, D.; Richardson, M.; Riesselmann, K.; Robinson, M.; Rosen, M.; Rosenfeld, C.; Rucinski, R.; Russo, T.; Sahijpal, S.; Salon, S.; Samios, N.; Sanchez, Maria Cristina; Schmitt, R.; Schmitz, D.; Schneps, J.; Scholberg, K.; Seibert, S.; Sergiampietri, F.; Shaevitz, Marjorie Hansen; Shanahan, P.; Shaposhnikov, M.; Sharma, R.; Simos, N.; Singh, V.; Sinnis, G.; Sippach, W.; Skwarnicki, T.; Smy, M.; Sobel, H.; Soderberg, M.; Sondericker, J.; Sondheim, W.; Spitz, Joshua; Spooner, N.; Stancari, M.; Stancu, Ion; Stewart, J.; Stoler, P.; Stone, J.; Stone, S.; Strait, J.; Straszheim, T.; Striganov, S.; Sullivan, G.; Svoboda, R.; Szczerbinska, B.; Szelc, A.; Talaga, R.; Tanaka, H.; Tayloe, R.; Taylor, D.; Thomas, J.; Thompson, L.; Thomson, M.; Thorn, C.; Tian, X.; Toki, W.; Tolich, N.; Tripathi, M.; Trovato, M.; Tseung, H.; Tzanov, M.; Urheim, J.; Usman, S.; Vagins, M. R.; Berg, R. V.; Water, R. V. D.; Varner, G.; Vaziri, K.; Velev, G.; Viren, B.; Wachala, T.; Walter, C.; Wang, H.; Wang, Z.; Warner, D.; Webber, D.; Weber, A.; Wendell, R.; Wendt, C.; Wetstein, M.; White, H.; White, S.; Whitehead, L.; Willis, W.; Wilson, R. J.; Winslow, L.; Ye, J.; Yeh, M.; Yu, B.; Zeller, Geralyn P.; Zhang, C.; Zimmerman, E.; Zwaska, R. (2011-10-27)In early 2010, the Long-Baseline Neutrino Experiment (LBNE) science collaboration initiated a study to investigate the physics potential of the experiment with a broad set of different beam, near- and far-detector configurations. Nine initial topics were identified as scientific areas that motivate construction of a long-baseline neutrino experiment with a very large far detector. We summarize the scientific justification for each topic and the estimated performance for a set of far detector reference configurations. We report also on a study of optimized beam parameters and the physics capability of proposed Near Detector configurations. This document was presented to the collaboration in fall 2010 and updated with minor modifications in early 2011.
- An analysis of nonoblique corrections to the Zb¯b vertexTakeuchi, Tatsu; Grant, Aaron K.; Rosner, Jonathan L. (1994)We present a model–independent analysis of the Zb¯b vertex, with the aim of constraining contributions of new physics to the left- and right–handed couplings of the b. We find that the left–handed coupling of the b is quite narrowly constrained by present data, but that the right–handed coupling is still largely unconstrained.
- Applied Antineutrino Physics 2015 -- Conference SummaryBowden, N. S.; Heeger, K. M.; Huber, Patrick; Mariani, Camillo; Vogelaar, R. Bruce (2016-02)This is a brief summary of the 11th Applied Antineutrino Physics 2015 workshop held at the Virginia Tech Arlington Research Facility from December 7-8, 2015.
- CHANDLER: A New Technology for Surface-level Reactor Neutrino DetectionLink, Jonathan M. (2016-12-16)Motivation ‒ Why do we need better reactor neutrino detectors? Technological Foundations ‒ Where do these ideas come from? The CHANDLER Technology ‒ The basics idea Detector R&D ‒ What we have learned so far CHANDLER and SoLid ‒ A sterile neutrino search
- Characterization of the spontaneous light emission of the PMTs used in the Double Chooz experimentAbe, Y.; Abrahao, T.; Almazan, H.; Alt, C.; Appel, S.; Baussan, E.; Bekman, I.; Bergevin, M.; Bezerra, T. J. C.; Bezrukhov, Leonid B.; Blucher, E.; Brugiere, T.; Buck, C.; Busenitz, J.; Cabrera, A.; Calvo, E.; Camilleri, Leslie; Carr, Rachel E.; Cerrada, M.; Chauveau, E.; Chimenti, P.; Collin, A. P.; Conover, E.; Conrad, Janet M.; Crespo-Anadon, J. I.; Crum, K.; Cucoanes, A. S.; Damon, E.; Dawson, J. V.; de Kerret, H.; Dhooghe, J.; Dietrich, D.; Djurcic, Zelimir; dos Anjos, J. C.; Dracos, M.; Etenko, A.; Fallot, M.; Felde, J.; Fernandes, S. M.; Fischer, V.; Franco, D.; Franke, M.; Furuta, H.; Gil-Botella, I.; Giot, L.; Goger-Neff, M.; Gomez, H.; Gonzalez, L. F. G.; Goodenough, L.; Goodman, M. C.; Haag, N.; Hara, T.; Haser, J.; Hellwig, D.; Hofmann, M.; Horton-Smith, Glenn A.; Hourlier, A.; Ishitsuka, M.; Jiménez, S.; Jochum, J.; Jollet, C.; Kaether, F.; Kalousis, L. N.; Kamyshkov, Y.; Kaneda, M.; Kaplan, D. M.; Kawasaki, T.; Kemp, E.; Kryn, D.; Kuze, M.; Lachenmaier, Tobias; Lane, C. E.; Lasserre, T.; Letourneau, A.; Lhuillier, D.; Lima, H. P.; Lindner, M.; Lopez-Castano, J. M.; LoSecco, J. M.; Lubsandorzhiev, B. K.; Lucht, S.; Maeda, J.; Mariani, Camillo; Maricic, Jelena; Martino, J.; Matsubara, T.; Mention, G.; Meregaglia, A.; Miletic, T.; Milincic, R.; Minotti, A.; Nagasaka, Y.; Navas-Nicolás, D.; Novella, P.; Nunokawa, H.; Oberauer, L.; Obolensky, M.; Onillon, A.; Osborn, A.; Palomares, C.; Pepe, I. M.; Perasso, S.; Porta, A.; Pronost, G.; Reichenbacher, J.; Reinhold, B.; Roehling, M.; Roncin, R.; Rybolt, B.; Sakamoto, Y.; Santorelli, R.; Schilithz, A. C.; Schoenert, S.; Schoppmann, S.; Shaevitz, Marjorie Hansen; Sharankova, R.; Shrestha, D.; Sibille, V.; Sinev, V.; Skorokhvatov, Mikhail D.; Smith, E.; Soiron, M.; Spitz, Joshua; Stahl, A.; Stancu, Ion; Stokes, Lee F. F.; Strait, M.; Suekane, F.; Sukhotin, S.; Sumiyoshi, T.; Sun, Y.; Svoboda, R.; Terao, K.; Tonazzo, A.; Thi, H. H. T.; Valdiviesso, G. A.; Vassilopoulos, N.; Verdugo, A.; Veyssiere, C.; Vivier, M.; von Feilitzsch, F.; Wagner, S.; Walsh, N.; Watanabe, H.; Wiebusch, C.; Wurm, M.; Yang, G.; Yermia, F.; Zimmer, V. (IOP, 2016-08-01)
- Comparison of the calorimetric and kinematic methods of neutrino energy reconstruction in disappearance experimentsAnkowski, Artur M.; Benhar, Omar; Coloma, Pilar; Huber, Patrick; Jen, C. M.; Mariani, Camillo; Meloni, David; Vagnoni, E. (American Physical Society, 2015-10-22)To be able to achieve their physics goals, future neutrino-oscillation experiments will need to reconstruct the neutrino energy with very high accuracy. In this work, we analyze how the energy reconstruction may be affected by realistic detection capabilities, such as energy resolutions, efficiencies, and thresholds. This allows us to estimate how well the detector performance needs to be determined a priori in order to avoid a sizable bias in the measurement of the relevant oscillation parameters. We compare the kinematic and calorimetric methods of energy reconstruction in the context of two νμ &8594; νμ disappearance experiments operating in different energy regimes. For the calorimetric reconstruction method, we find that the detector performance has to be estimated with an Ο(10%) accuracy to avoid a significant bias in the extracted oscillation parameters. On the other hand, in the case of kinematic energy reconstruction, we observe that the results exhibit less sensitivity to an overestimation of the detector capabilities.
- Constraining new physics with vertex correctionsTakeuchi, Tatsu; Lebedev, O.; Loinaz, William (1999)
- Constraining non-standard interactions of the neutrino with BorexinoAgarwalla, S. K.; Lombardi, Francesco; Takeuchi, Tatsu (Springer, 2012-12-01)We use the Borexino 153.6 ton·year data to place constraints on non-standard neutrino-electron interactions, taking into account the uncertainties in the 7Be solar neutrino flux and the mixing angle θ 23, and backgrounds due to 85Kr and 210Bi β-decay. We find that the bounds are comparable to existing bounds from all other experiments. Further improvement can be expected in Phase II of Borexino due to the reduction in the 85Kr background.
- Constraining visible neutrino decay at KamLAND and JUNOPorto-Silva, Yago P.; Prakash, Suprabh; Peres, O. L. G.; Nunokawa, Hiroshi; Minakata, Hisakazu (2020-10-29)We study visible neutrino decay at the reactor neutrino experiments KamLAND and, JUNO. Assuming the Majoron model of neutrino decay, we obtain constraints on the couplings between Majoron and neutrino as well as on the lifetime/mass of the most massive neutrino state i.e., tau(3)/m(3) or tau(2)/m(2), respectively, for the normal or the inverted mass orderings. We obtain the constraints on the lifetime tau(2)/m(2)>= 1.4x10(-9) s/eV in the inverted mass ordering for both KamLAND and JUNO at 90% CL. In the normal ordering in which the bound can be obtained for JUNO only, the constraint is milder than the inverted ordering case, tau(3)/m(3) >= 1.0 x 10(-1)0 s/eV at 90% CL. We find that the dependence of lightest neutrino mass (= m(lightest)), m(1)(m(3)) for the normal (inverted) mass ordering, on the constraints for the different types of couplings (scalar or pseudo-scalar) is rather strong, but the m(lightest) dependence on the lifetime/mass bound is only modest.
- Constraints on R-parity violation from recent Belle/Babar dataKao, Y.; Takeuchi, Tatsu (2009)
- Convolutional neural networks applied to neutrino events in a liquid argon time projection chamberAcciarri, R.; Adams, C.; An, R.; Asaadi, J.; Auger, M.; Bagby, L.; Baller, B.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Bugel, L.; Camilleri, Leslie; Caratelli, D.; Carls, B.; Fernandez, R. C.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Collin, G. H.; Conrad, Janet M.; Convery, M.; Crespo-Anadon, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garvey, G. T.; Genty, V.; Goeldi, D.; Golapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, Glenn A.; James, C.; de Vries, J. J.; Jen, C. M.; Jiang, L.; Johnson, R. A.; Jones, B. J. P.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, Georgia S.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, Camillo; Marshall, J.; Caicedo, D. A. M.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; von Rohr, C. R.; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, Marjorie Hansen; Sinclair, J.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, Joshua; St John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y. T.; Tufanli, S.; Usher, T.; de Water, R. G. V.; Viren, B.; Weber, M.; Weston, J.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Zeller, Geralyn P.; Zennamo, J.; Zhang, C. (IOP, 2017-03-01)We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. We also address technical issues that arise when applying this technique to data from a large LArTPC at or near ground level.
- Dalitz plot analysis of the D+ -> K-pi(+)pi(+) decay in the FOCUS experimentLink, Jonathan M.; Yager, P. M.; Anjos, J. C.; Bediaga, I.; Castromonte, C.; Machado, A. A.; Magnin, J.; Massafferri, A.; de Miranda, J. M.; Pepe, I. M.; Polycarpo, E.; dos Reis, A. C.; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sánchez-Hernández, A.; Uribe, C.; Vázquez, F.; Agostino, L.; Cinquini, L.; Cumalat, J. P.; Frisullo, V.; O'Reilly, B.; Segoni, I.; Stenson, K.; Butler, J. N.; Cheung, H. W. K.; Chiodini, G.; Gaines, I.; Garbincius, P. H.; Garren, L. A.; Gottschalk, E.; Kasper, P. H.; Kreymer, A. E.; Kutschke, R.; Wang, M.; Benussi, L.; Bianco, S.; Fabbri, F. L.; Zallo, A.; Reyes, M.; Cawlfield, C.; Kim, D. Y.; Rahimi, A.; Wiss, J.; Gardner, R.; Kryemadhi, A.; Chung, Y. S.; Kang, J. S.; Ko, B. R.; Kwak, J. W.; Lee, K. B.; Cho, K.; Park, H.; Alimonti, G.; Barberis, S.; Boschini, M.; Cerutti, A.; D'Angelo, P.; DiCorato, M.; Dini, P.; Edera, L.; Erba, S.; Inzani, P.; Leveraro, E.; Malvezzi, S.; Menasce, D.; Mezzadri, M.; Moroni, L.; Pedrini, D.; Pontoglio, C.; Prelz, F.; Rovere, M.; Sala, S.; Davenport, T. F. III; Arena, V.; Boca, G.; Bonomi, G.; Gianini, G.; Liguori, G.; Pegna, D. L.; Merlo, M. M.; Pantea, D.; Ratti, S. P.; Riccardi, C.; Vitulo, P.; Goebel, C.; Otalora, J.; Hemandez, H.; Lopez, A. M.; Mendez, H.; Paris, A.; Quinones, J.; Ramirez, J. E.; Zhang, Y.; Wilson, J. R.; Handler, T.; Mitchell, R.; Engh, D.; Hosack, M.; Johns, W. E.; Luiggi, E.; Nehring, M.; Sheldon, P. D.; Vaandering, E. W.; Webster, M.; Sheaff, M.; Pennington, M. R. (2007-09-13)Using data collected by the high energy photoproduction experiment FOCUS at Fermilab we performed a Dalitz plot analysis of the Cabibbo favored decay D+ ! K−π+π+. This study uses 53653 Dalitz-plot events with a signal fraction of 97%, and represents the highest statistics, most complete Dalitz plot analysis for this channel. Results are presented and discussed using two different formalisms. The first is a simple sum of Breit–Wigner functions with freely fitted masses and widths. It is the model traditionally adopted and serves as comparison with the already published analyses. The second uses a K-matrix approach for the dominant S-wave, in which the parameters are fixed by first fitting Kπ scattering data and continued to threshold by Chiral Perturbation Theory. We show that the Dalitz plot distribution for this decay is consistent with the assumption of two body dominance of the final state interactions and the description of these interactions is in agreement with other data on the Kπ final state.
- Dark matter-neutrino interconversion at COHERENT, direct detection, and the early UniverseHurtado, Nicholas; Mir, Hana; Shoemaker, Ian M.; Welch, Eli; Wyenberg, Jason (2020-07-14)We study a dark matter (DM) model in which the dominant coupling to the standard model occurs through a neutrino-DM-scalar coupling. The new singlet scalar will generically have couplings to nuclei/electrons arising from renormalizable Higgs portal interactions. As a result, the DM particle X can convert into a neutrino via scattering on a target nucleus N: X + N -> nu + N, leading to striking signatures at direct detection experiments. Similarly, DM can be produced in neutrino scattering events at neutrino experiments: nu + N -> X + N, predicting spectral distortions at experiments such as COHERENT. Furthermore, the model allows for late kinetic decoupling of dark matter with implications for small-scale structure. At low masses, we find that COHERENT and late kinetic decoupling produce the strongest constraints on the model, while at high masses the leading constraints come from DM down-scattering at XENON1T and Borexino. Future improvement will come from CavNS data, ultralow threshold direct detection, and rare kaon decays.
- Design and construction of the MicroBooNE detectorAcciarri, R.; Adams, C.; An, R.; Aparicio, A.; Aponte, S.; Asaadi, J.; Auger, M.; Ayoub, N.; Bagby, L.; Baller, B.; Barger, R.; Barr, G.; Bass, M.; Bay, F.; Biery, K.; Bishai, M.; Blake, A.; Bocean, V.; Boehnlein, D.; Bogert, V. D.; Bolton, T.; Bugel, L.; Callahan, C.; Camilleri, Leslie; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chappa, S.; Chen, H.; Chen, K.; Chi, C. Y.; Chiu, C. S.; Church, E.; Cianci, D.; Collin, G. H.; Conrad, Janet M.; Convery, M.; Cornele, J.; Cowan, P.; Crespo-Anadon, J. I.; Crutcher, G.; Darve, C.; Davis, R.; Del Tutto, M.; Devitt, D.; Duffin, S.; Dytman, S.; Eberly, B.; Ereditato, A.; Erickson, D.; Escudero Sanchez, L.; Esquivel, J.; Farooq, S.; Farrell, J.; Featherston, D.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Genty, V.; Geynisman, M.; Goeldi, D.; Goff, B.; Golapinni, S.; Graf, N.; Gramellini, E.; Green, J.; Greene, A.; Greenlee, H.; Griffin, T.; Grosso, R.; Guenette, R.; Hackenburg, A.; Haenni, R.; Hamilton, P.; Healey, P.; Hen, O.; Henderson, E.; Hewes, J.; Hill, C.; Hill, K.; Himes, L.; Ho, J.; Horton-Smith, Glenn A.; Huffman, D.; Ignarra, C. M.; James, C.; James, E.; Jan de Vries, J.; Jaskierny, W.; Jen, C. M.; Jiang, L.; Johnson, B.; Johnson, M.; Johnson, R. A.; Jones, B. J. P.; Joshi, J.; Jostlein, H.; Kaleko, D.; Kalousis, L. N.; Karagiorgi, Georgia S.; Katori, T.; Kellogg, P.; Ketchum, W.; Kilmer, J.; King, B.; Kirby, B.; Kirby, M.; Klein, E.; Kobilarcik, T.; Kreslo, I.; Krull, R.; Kubinski, R.; Lange, G.; Lanni, F.; Lathrop, A.; Laube, A.; Leeg, W. M.; Li, Y.; Lissauer, D.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Lukhanin, G.; Luethi, M.; Lundberg, B.; Luo, X.; Mahler, G.; Majoros, I.; Makowiecki, D.; Marchionni, A.; Mariani, Camillo; Markley, D.; Marshall, J.; Martinez Caicedo, D. A.; McDonald, K. T.; McKee, D.; McLean, A.; Mead, J.; Meddage, V.; Miceli, T.; Mills, G. B.; Miner, W.; Moon, J.; Mooney, M.; Moore, C. D.; Moss, Z.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Norris, B.; Norton, N.; Nowak, J.; O'Boyle, M.; Olszanowski, T.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Pelkey, R.; Phipps, M.; Pordes, S.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Radeka, V.; Rafique, A.; Rameika, R.; Rebel, B.; Rechenmacher, R.; Rescia, S.; Rochester, L.; von Rohr, C. R.; Ruga, A.; Russell, B.; Sanders, R.; Sands, W. R.; Sarychev, M.; Schmitz, D. W.; Schukraft, A.; Scott, R.; Seligman, W.; Shaevitz, Marjorie Hansen; Shoun, M.; Sinclair, J.; Sippach, W.; Smidt, T.; Smith, A.; Snider, E. L.; Soderberg, M.; Solano-Gonzalez, M.; Söldner-Rembold, S.; Soleti, S. R.; Sondericker, J.; Spentzouris, P.; Spitz, Joshua; St John, J.; Strauss, T.; Sutton, K.; Szelc, A. M.; Taheri, K.; Tagg, N.; Tatum, K.; Teng, J.; Terao, K.; Thomson, M.; Thorn, C.; Tiliman, J.; Toups, M.; Tsai, Y. T.; Tufanli, S.; Usher, T.; Utes, M.; Van de Water, R. G.; Vendetta, C.; Vergani, S.; Voirin, E.; Voirin, J.; Viren, B.; Watkins, P.; Weber, M.; Wester, T.; Weston, J.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Wu, K. C.; Yang, T.; Yu, B.; Zeller, Geralyn P.; Zennamo, J.; Zhang, C.; Zuckerbrot, M. (IOP, 2017-02-01)This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, and acceptance tests are reported.
- The difficulties involved in calculating $δρ$Takeuchi, Tatsu; Grant, Aaron K.; Worah, Mihir P. (1995-04)We discuss the difficulties that arise when one tries to calculate $\delta\rho$ using dispersion relations.
- Direct measurement of backgrounds using reactor-off data in Double ChoozAbe, Y.; Aberle, C.; dos Anjos, J. C.; Barriere, J. C.; Bergevin, M.; Bernstein, A.; Bezerra, T. J. C.; Bezrukhov, Leonid B.; Blucher, E.; Bowden, N. S.; Buck, C.; Busenitz, J.; Cabrera, A.; Caden, E.; Camilleri, Leslie; Carr, Rachel E.; Cerrada, M.; Chang, P. J.; Chimenti, P.; Classen, T.; Collin, A. P.; Conover, E.; Conrad, Janet M.; Crespo-Anadon, J. I.; Crum, K.; Cucoanes, A. S.; D'Agostino, M. V.; Damon, E.; Dawson, J. V.; Dazeley, S.; Dietrich, D.; Djurcic, Zelimir; Dracos, M.; Durand, V.; Ebert, J.; Efremenko, Y.; Elnimr, M.; Erickson, A.; Etenko, A.; Fallot, M.; Fechner, M.; von Feilitzsch, F.; Felde, J.; Fernandes, S. M.; Fischer, V.; Franco, D.; Franke, A. J.; Franke, M.; Furuta, H.; Gama, R.; Gil-Botella, I.; Giot, L.; Goger-Neff, M.; Gonzalez, L. F. G.; Goodenough, L.; Goodman, M. C.; Goon, J. T. M.; Greiner, D.; Haag, N.; Habib, S.; Hagner, C.; Hara, T.; Hartmann, F. X.; Haser, J.; Hatzikoutelis, A.; Hayakawa, T.; Hofmann, M.; Horton-Smith, Glenn A.; Hourlier, A.; Ishitsuka, M.; Jochum, J.; Jollet, C.; Jones, C. L.; Kaether, F.; Kalousis, L. N.; Kamyshkov, Y.; Kaplan, D. M.; Kawasaki, T.; Keefer, G.; Kemp, E.; de Kerret, H.; Kibe, Y.; Konno, T.; Kryn, D.; Kuze, M.; Lachenmaier, Tobias; Lane, C. E.; Langbrandtner, C.; Lasserre, T.; Letourneau, A.; Lhuillier, D.; Lima, H. P.; Lindner, M.; Lopez-Castano, J. M.; LoSecco, J. M.; Lubsandorzhiev, B. K.; Lucht, S.; McKee, D.; Maeda, J.; Maesano, C. N.; Mariani, Camillo; Maricic, Jelena; Martino, J.; Matsubara, T.; Mention, G.; Meregaglia, A.; Meyer, M.; Miletic, T.; Milincic, R.; Miyata, H.; Mueller, T. A.; Nagasaka, Y.; Nakajima, K.; Novella, P.; Obolensky, M.; Oberauer, L.; Onillon, A.; Osborn, A.; Ostrovskiy, I.; Palomares, C.; Pepe, I. M.; Perasso, S.; Perrin, P.; Pfahler, P.; Porta, A.; Potzel, W.; Pronost, G.; Reichenbacher, J.; Reinhold, B.; Remoto, A.; Roehling, M.; Roncin, R.; Roth, S.; Rybolt, B.; Sakamoto, Y.; Santorelli, R.; Sato, F.; Schoenert, S.; Schoppmann, S.; Schwetz, T.; Shaevitz, Marjorie Hansen; Shimojima, S.; Shrestha, D.; Sida, J. L.; Sinev, V.; Skorokhvatov, Mikhail D.; Smith, E.; Spitz, Joshua; Stahl, A.; Stancu, Ion; Stokes, Lee F. F.; Strait, M.; Stuken, A.; Suekane, F.; Sukhotin, S.; Sumiyoshi, T.; Sun, Y.; Svoboda, R.; Terao, K.; Tonazzo, A.; Toups, M.; Thi, H. H. T.; Valdiviesso, G. A.; Veyssiere, C.; Wagner, S.; Watanabe, H.; White, B.; Wiebusch, C.; Winslow, L.; Worcester, M.; Wurm, M.; Yermia, F.; Zimmer, V.; Double Chooz, Collaboration (American Physical Society, 2013-01-08)Double Chooz is unique among modern reactor-based neutrino experiments studying (nu) over bar (e) disappearance in that data can be collected with all reactors off. In this paper, we present data from 7.53 days of reactor-off running. Applying the same selection criteria as used in the Double Chooz reactor-on oscillation analysis, a measured background rate of 1.0 +/- 0.4 events/day is obtained. The background model for accidentals, cosmogenic beta-n-emitting isotopes, fast neutrons from cosmic muons, and stopped-mu decays used in the oscillation analysis is demonstrated to be correct within the uncertainties. Kinematic distributions of the events, which are dominantly cosmic-ray-produced correlated-background events, are provided. The background rates are scaled to the shielding depths of two other reactor-based oscillation experiments, Daya Bay and RENO.
- The edge of supersymmetry: Stability walls in heterotic theoryAnderson, Lara B.; Gray, James A.; Lukas, Andre; Ovrut, Burt (Elsevier, 2009-06-22)
- Experimental Neutrino PhysicsLink, Jonathan M. (2016-02-11)
- Experimental Neutrino Physics: Review and SummaryLink, Jonathan M. (2016-09-22)
- First measurement of the muon antineutrino double-differential charged-current quasielastic cross sectionAguilar-Arevalo, A. A.; Brown, B. C.; Bugel, L.; Cheng, G.; Church, E. D.; Conrad, Janet M.; Dharmapalan, R.; Djurcic, Zelimir; Finley, D. A.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Huelsnitz, W.; Ignarra, C. M.; Imlay, R.; Johnson, R. A.; Karagiorgi, Georgia S.; Katori, T.; Kobilarcik, T.; Louis, W. C.; Mariani, Camillo; Marsh, W.; Mills, G. B.; Mirabal, J.; Moore, C. D.; Mousseau, J.; Nienaber, P.; Osmanov, B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Ray, H.; Roe, B. P.; Russell, A. D.; Shaevitz, Marjorie Hansen; Spitz, Joshua; Stancu, Ion; Tayloe, R.; Van de Water, R. G.; Wascko, M. O.; White, D. H.; Wickremasinghe, D. A.; Zeller, Geralyn P.; Zimmerman, E. D.; MiniBoo, N. E. Collaboration (American Physical Society, 2013-08-02)The largest sample ever recorded of (nu) over bar (mu) charged-current quasielastic (CCQE, (nu) over bar (mu) + p -> mu(+) + n) candidate events is used to produce the minimally model-dependent, flux-integrated double-differential cross section d(2)sigma/dT(mu) d cos theta(mu) for (nu) over bar (mu) CCQE for a mineral oil target. This measurement exploits the large statistics of the MiniBooNE antineutrino mode sample and provides the most complete information of this process to date. In order to facilitate historical comparisons, the flux-unfolded total cross section sigma(E-nu) and single-differential cross section d sigma/dQ(2) on both mineral oil and on carbon are also reported. The observed cross section is somewhat higher than the predicted cross section from a model assuming independently acting nucleons in carbon with canonical form factor values. The shape of the data are also discrepant with this model. These results have implications for intranuclear processes and can help constrain signal and background processes for future neutrino oscillation measurements.