ETDs: Virginia Tech Electronic Theses and Dissertations
Permanent URI for this community
Virginia Tech has been a world leader in electronic theses and dissertation initiatives for more than 20 years. On January 1, 1997, Virginia Tech was the first university to require electronic submission of theses and dissertations (ETDs). Ever since then, Virginia Tech graduate students have been able to prepare, submit, review, and publish their theses and dissertations online and to append digital media such as images, data, audio, and video.
University Libraries staff are currently digitizing thousands of pre-1997 theses and dissertations and loading them into VTechWorks. Most of these theses and dissertations are fully available to the public, but we will, in general, honor requests by the item's author to restrict access to Virginia Tech only. See our process for Requesting that Material be Amended or Removed.
To search all Virginia Tech print and digital theses and dissertations, use the University Libraries ETD resource guide.
Materials that are restricted to Virginia Tech only may be requested via your own university or public library's Interlibrary Loan program or through the VTechWorks request form that appears when you try to access the item. You might also be able to obtain a copy of the work through ProQuest's database of theses and dissertations. If you are on a Virginia Tech campus but are unable to find the pre-1997 thesis or dissertation you are seeking in VTechWorks, you may also be able to order a physical copy from library storage. Please check the library catalog at http://www.lib.vt.edu/ for physical copies.
The guidelines that apply to Virginia Tech's graduate students as ETD authors can be found at http://guides.lib.vt.edu/ETDguide.
Browse
Browsing ETDs: Virginia Tech Electronic Theses and Dissertations by Department "Aerospace and Ocean Engineering"
Results Per Page
Sort Options
- 3D Simulator for Wind Interferometer Data-Model ComparisonHuda, Md Nurul (Virginia Tech, 2019-09-27)The connection between earth and space weather has numerous impacts on spacecraft, radio communications and GPS signals. Thus, predicted & modeling this region is important, yet models (both empirical and first principles) do a poor job of characterizing the variability of this region. One of the main objectives of the NASA ICON mission is to measure the variability of the ionosphere and thermosphere at low-mid latitudes. The MIGHTI instrument on ICON is a Doppler Interferometer that measures the horizontal wind speed and direction with 2 discrete MIGHTI units, separated by 90˚, mounted on the ICON Payload Interface Plate. This work focuses on building a simulation of wind interferometer data, similar to MIGHTI, using a first-principles model as the input dataset, which will be used for early validation and comparison to the MIGHTI data. Using a ray-tracing approach, parameters like O, O2, O+, O2+, T, wind, solar F10.7 index will be read for every point along every ray from the model and brightness and Line of Sight (LOS) wind will be calculated as functions of altitude and time. These data will be compared to the MIGHTI observations to both to establish the limitation of such models, and to validate the ICON data. ICON will help determine the physics of our space environment and pave the way for mitigating its effects on our technology, communications systems and society. However, ICON is yet to launch and due to the unavailability of MIGHTI data, we have selected another instrument called WINDII (Wind Imaging Interferometer) from a different mission UARS (Upper Atmosphere Research Satellite) to demonstrate the utility of this data-model comparison. Similar to MIGHTI, WINDII measures Doppler shifts from a suite of visible region airglow and measures zonal and meridian winds, temperature, and VER (Volume Emission rate) in the upper mesosphere and lower thermosphere (80 to 300 km) from observations of the Earth's airglow. We will use a similar approach discussed for MIGHTI to calculate vertical profile of Redline airglow, Wind velocity, emission rate and compare them with our simulated results to validate our algorithm. We initially thought asymmetry calculation along the Line of Sight (LOS) would be the limiting factor. We believe there are other things going on such as variability in the winds associated with natural fluctuations in the thermosphere, atmospheric waves, inputs from the sun and the atmosphere below etc., appear to be bigger factor than just asymmetry along the line of sight.
- 4D combustion and flow diagnostics based on tomographic chemiluminescence (TC) and volumetric laser-induced fluorescence (VLIF)Wu, Yue (Virginia Tech, 2016-12-02)Optical diagnostics have become indispensable tools for the study of turbulent flows and flames. However, optical diagnostics developed in the past have been primarily limited to measurements at a point, along a line, or across a two-dimensional (2D) plane; while turbulent flows and flames are inherently four-dimensional (three-dimensional in space and transient in time). As a result, diagnostic techniques which can provide 4D measurement have been long desired. The purpose of this dissertation is to investigate two of such 4D diagnostics both for the fundamental study of turbulent flow and combustion processes and also for the applied research of practical devices. These two diagnostics are respectively code named tomographic chemiluminescence (TC) and volumetric laser induced fluorescence (VLIF). For the TC technique, the emission of light as the result of combustion (i.e. chemiluminescence) is firstly recorded by multiple cameras placed at different orientations. A numerical algorithm is then applied on the data recorded to reconstruct the 4D flame structure. For the VLIF technique, a laser is used to excite a specific species in the flow or flame. The excited species then de-excite to emit light at a wavelength longer than the laser wavelength. The emitted light is then captured by optical sensors and again, the numerical algorithm is applied to reconstruct the flow or flame structure. This dissertation describes the numerical and experimental validation of these two techniques, and explores their capabilities and limitations. It is expected that the results obtained in this dissertation lay the groundwork for further development and expanded application of 4D diagnostics for the study of turbulent flows and combustion processes.
- A* Node Search and Nonlinear Optimization for Satellite Relative Motion Path PlanningConnerney, Ian Edward (Virginia Tech, 2021-11-03)The capability to perform rendezvous and proximity operations about space objects is central to the next generation of space situational awareness. The ability to diagnose and respond to spacecraft anomalies is often hampered by the lack of capability to perform inspection or testing on the target vehicle in flight. While some limited ability to perform inspection can be provided by an extensible boom, such as the robotic arms deployed on the space shuttle and space station, a free-flying companion vehicle provides maximum flexibility of movement about the target. Safe and efficient utilization of a companion vehicle requires trajectories capable of minimizing spacecraft resources, e.g., time or fuel, while adhering to complex path and state constraints. This paper develops an efficient solution method capable of handling complex constraints based on a grid search A* algorithm and compares solution results against a state-of-the-art nonlinear optimization method. Trajectories are investigated that include nonlinear constraints, such as complex keep-out-regions and thruster plume impingement, that may be required for inspection of a specific target area in a complex environment. This work is widely applicable and can be expanded to apply to a variety of satellite relative motion trajectory planning problems.
- Accelerating a Coupled SPH-FEM Solver through Heterogeneous Computing for use in Fluid-Structure Interaction ProblemsGilbert, John Nicholas (Virginia Tech, 2015-06-08)This work presents a partitioned approach to simulating free-surface flow interaction with hyper-elastic structures in which a smoothed particle hydrodynamics (SPH) solver is coupled with a finite-element (FEM) solver. SPH is a mesh-free, Lagrangian numerical technique frequently employed to study physical phenomena involving large deformations, such as fragmentation or breaking waves. As a mesh-free Lagrangian method, SPH makes an attractive alternative to traditional grid-based methods for modeling free-surface flows and/or problems with rapid deformations where frequent re-meshing and additional free-surface tracking algorithms are non-trivial. This work continues and extends the earlier coupled 2D SPH-FEM approach of Yang et al. [1,2] by linking a double-precision GPU implementation of a 3D weakly compressible SPH formulation [3] with the open source finite element software Code_Aster [4]. Using this approach, the fluid domain is evolved on the GPU, while the CPU updates the structural domain. Finally, the partitioned solutions are coupled using a traditional staggered algorithm.
- Accelerating Conceptual Design Analysis of Marine Vehicles through Deep LearningJones, Matthew Cecil (Virginia Tech, 2019-05-02)Evaluation of the flow field imparted by a marine vehicle reveals the underlying efficiency and performance. However, the relationship between precise design features and their impact on the flow field is not well characterized. The goal of this work is first, to investigate the thermally-stratified near field of a self-propelled marine vehicle to identify the significance of propulsion and hull-form design decisions, and second, to develop a functional mapping between an arbitrary vehicle design and its associated flow field to accelerate the design analysis process. The unsteady Reynolds-Averaged Navier-Stokes equations are solved to compute near-field wake profiles, showing good agreement to experimental data and providing a balance between simulation fidelity and numerical cost, given the database of cases considered. Machine learning through convolutional networks is employed to discover the relationship between vehicle geometries and their associated flow fields with two distinct deep-learning networks. The first network directly maps explicitly-specified geometric design parameters to their corresponding flow fields. The second network considers the vehicle geometries themselves as tensors of geometric volume fractions to implicitly-learn the underlying parameter space. Once trained, both networks effectively generate realistic flow fields, accelerating the design analysis from a process that takes days to one that takes a fraction of a second. The implicit-parameter network successfully learns the underlying parameter space for geometries within the scope of the training data, showing comparable performance to the explicit-parameter network. With additions to the size and variability of the training database, this network has the potential to abstractly generalize the design space for arbitrary geometric inputs, even those beyond the scope of the training data.
- Accelerating Structural Design and Optimization using Machine LearningSingh, Karanpreet (Virginia Tech, 2020-01-13)Machine learning techniques promise to greatly accelerate structural design and optimization. In this thesis, deep learning and active learning techniques are applied to different non-convex structural optimization problems. Finite Element Analysis (FEA) based standard optimization methods for aircraft panels with bio-inspired curvilinear stiffeners are computationally expensive. The main reason for employing many of these standard optimization methods is the ease of their integration with FEA. However, each optimization requires multiple computationally expensive FEA evaluations, making their use impractical at times. To accelerate optimization, the use of Deep Neural Networks (DNNs) is proposed to approximate the FEA buckling response. The results show that DNNs obtained an accuracy of 95% for evaluating the buckling load. The DNN accelerated the optimization by a factor of nearly 200. The presented work demonstrates the potential of DNN-based machine learning algorithms for accelerating the optimization of bio-inspired curvilinearly stiffened panels. But, the approach could have disadvantages for being only specific to similar structural design problems, and requiring large datasets for DNNs training. An adaptive machine learning technique called active learning is used in this thesis to accelerate the evolutionary optimization of complex structures. The active learner helps the Genetic Algorithms (GA) by predicting if the possible design is going to satisfy the required constraints or not. The approach does not need a trained surrogate model prior to the optimization. The active learner adaptively improve its own accuracy during the optimization for saving the required number of FEA evaluations. The results show that the approach has the potential to reduce the total required FEA evaluations by more than 50%. Lastly, the machine learning is used to make recommendations for modeling choices while analyzing a structure using FEA. The decisions about the selection of appropriate modeling techniques are usually based on an analyst's judgement based upon their knowledge and intuition from past experience. The machine learning-based approach provides recommendations within seconds, thus, saving significant computational resources for making accurate design choices.
- Accuracy analysis of the semi-analytical method for shape sensitivity analysisBarthelemy, Bruno (Virginia Polytechnic Institute and State University, 1987)The semi-analytical method, widely used for calculating derivatives of static response with respect to design variables for structures modeled by finite elements, is studied in this research. The research shows that the method can have serious accuracy problems for shape design variables in structures modeled by beam, plate, truss, frame, and solid elements. Local and global indices are developed to test the accuracy of the semi-analytical method. The local indices provide insight into the problem of large errors for the semi-analytical method. Local error magnification indices are developed for beam and plane truss structures, and several examples showing the severity of the problem are presented. The global index provides us with a general method for checking the accuracy of the semi-analytical method for any type of model. It characterizes the difference in errors between a general finite-difference method and the semi-analytical method. Moreover, a method improving the accuracy of the semi-analytical method (when possible) is provided. Examples are presented showing the use of the global index.
- Acoustic Analysis of Spacecraft Cavities using the Boundary Element MethodMarshall, Peter Johannes (Virginia Tech, 2018-06-05)Spacecraft structures are subject to a series of load environments during their service life, with the most severe of these occurring during the spacecraft's launch and ascension through the atmosphere. In particular, acoustic loads imposed on stowed satellites within the launch vehicle fairing can result in high mechanical loads on sensitive spacecraft hardware. These acoustic loads have the potential to damage important components and as such it is necessary to accurately characterize and predict the acoustic launch environment for a given mission. This research investigates the Sound Pressure Level (SPL) that can be measured in and around spacecraft cavities resulting from a known excitation and the resultant structural responses. Linear finite element analysis (FEA) is coupled with the Boundary Element method (BEM) to analyze spacecraft acoustic environments and corresponding structural responses at low frequencies on the order of the structural modes. Analytical capability for predicting acoustic environments inside the launch vehicle has improved significantly in recent years; however, while it is easy to perform an analysis and obtain results, the modeling effort can become unnecessarily complicated and analytical data can be hard to interpret. This work seeks to alleviate unnecessary complexity in the low-frequency regime of acoustic modeling by examining the fundamentals of coupled BEM-FEM analysis and applying simplification to a spacecraft model where possible to achieve results verified against direct field acoustic testing (DFAT) methods.
- Acoustic scattering analysis for remote sensing of manganese nodulesMa, Yushieh (Virginia Polytechnic Institute and State University, 1982)The theory of the scattering of plane waves in a fluid medium by an isotropic elastic sphere representing a manganese nodule is developed. Scattering cross sections were computed using the theory and the results are presented graphically. The scattering cross section and the reflectivity factor govern the characteristic acoustic signature of the Pacific where manganese nodules are present. Preliminary experimental data for the compressional and shear wave speeds in nodule material is given. This data was used in the scattering computations. Limiting cases of Rayleigh scattering and scattering from fixed rigid and fluid spheres are also shown for comparison. It is shown that the rigidity of the nodules dominates the high frequency response. The problem of the multiple scattering of acoustic waves by randomly distributed nodules on the flat ocean bottom is investigated analytically. The statistical description of nodule deposits is given. The concept of the configurational average is introduced in order to obtain the average scattered response. The size averaging is found to be able to smooth the acoustic response in the high frequency region. The plane wave analysis for the multiple scattering problem is justified by the narrow beam investigation. It shows that the beam effect on the average backscattered field can be neglected in the remote sensing. For a planar distribution of nodules, the average scattered field excited by a normally incident plane wave is verified to be plane waves characterized by coherent reflection and transmission coefficients. The multiple scattering effect is found to be a higher order correction to the average scattered field. For a sparse distribution of nodules, the average scattered field can be well evaluated using the single scattering theory in which the scattering process is also shown to be energy conserved. For a dense distribution of nodules, the radial distribution function is used in the Foldy-Lax hierarchy. The result shows that the pair correlation affects the phase of the second order correction term in the expression for the average scattered field when the higher order statistics are truncated using the quasi crystalline approximation.
- Acoustic Tomography and Thrust Estimation on Turbofan EnginesGillespie, John Lawrie (Virginia Tech, 2023-12-21)Acoustic sensing provides a possibility of measuring propulsion flow fields non-intrusively, and is of great interest because it may be applicable to cases that are difficult to measure with traditional methods. In this work, some of the successes and limitations of this technique are considered. In the first main result, the acoustic time of flight is shown to be usable along with a calibration curve in order to accurately estimate the thrust of two turbofan engines (1.0-1.5%). In the second, it is shown that acoustic tomography methods that only use the first ray paths to arrive cannot distinguish some relevant propulsion flow fields (i.e., different flow fields can have the same times of flight). In the third result we demonstrate, via the first validated acoustic tomography experiment on a turbofan engine, that a reasonable estimate of the flow can be produced despite this challenge. This is also the first successful use of acoustic tomography to reconstruct a compressible, multi-stream flow.
- Active and Passive Flow Control over the Flight Deck of Small Naval VesselsShafer, Daniel Manfred (Virginia Tech, 2005-04-27)Helicopter operations in the vicinity of small naval surface vessels often require excessive pilot workload. Because of the unsteady flow field and large mean velocity gradients, the envelope for flight operations is limited. This experimental investigation uses a 1:144 scale model of the U.S. Navy destroyer DDG-81 to explore the problem. Both active and passive flow control techniques were used to improve the flow field in the helicopter's final decent onto the flight deck. Wind tunnel data was collected at a set of grid points over the ship's flight deck using a single component hotwire. Results show that the use of porous surfaces decreases the unsteadiness of the flow field. Further improvements are found by injecting air through these porous surfaces, causing a reduction in unsteadiness in the landing region of 6.6% at 0 degrees wind-over-deck (WOD) and 8.3% at 20 degrees WOD. Other passive configurations tested include fences placed around the hangar deck edges which move the unsteady shear layer away from the flight deck. Although these devices cause an increase in unsteadiness downstream of the edge of the fence when compared to the baseline, the reticulated foam fence caused an overall decrease in unsteadiness in the landing region of 12.1% at 20 degrees WOD.
- Active Flow Control of a Boundary Layer Ingesting Serpentine DiffuserHarrison, Neal A. (Virginia Tech, 2005-07-13)The use of serpentine boundary layer ingesting (BLI) diffusers offers a significant benefit to the performance of Blended Wing Body aircraft. However, the inherent diffuser geometry combined with a thick ingested boundary layer creates strong secondary flows that lead to severe flow distortion at the engine face, increasing the possibility of engine surge. This study investigated the use of enabling active flow control methods to reduce engine-face distortion. An ejector-pump based system of fluidic actuators was used to directly manage the diffuser secondary flows. This system was modeled computationally using a boundary condition jet modeling method, and tested in an ejector-driven wind tunnel facility. This facility is capable of simulating the high-altitude, high subsonic Mach number conditions representative of BWB cruise conditions, specifically a cruise Mach number of 0.85 at an altitude of 39,000 ft. The tunnel test section used for this experiment was designed, built, and tested as a validation tool for the computational methods. This process resulted in the creation of a system capable of efficiently investigating and testing the fundamental mechanisms of flow control in BLI serpentine diffusers at a minimum of time and expense. Results of the computational and wind tunnel analysis confirmed the large potential benefit of adopting fluidic actuators to control flow distortion in serpentine BLI inlets. Computational analysis showed a maximum 71% reduction in flow distortion at the engine face through the use of the Pyramid 1 ejector scheme, and a 68% reduction using the Circumferential ejector scheme. However, the flow control systems were also found to have a significant impact on flow swirl. The Pyramid 1 ejector scheme was found to increase AIP flow swirl by 64%, while the Circumferential ejector scheme reduced flow swirl by 30%. Computational analyses showed that this difference was the result of jet interaction. By keeping the jet flows separate and distinct, the diffuser secondary flows could be more efficiently managed. For this reason, the most practically effective flow control scheme was the Circumferential ejector scheme. Experimental results showed that the computational analysis slightly over-predicted flow distortion. However, the trends are accurately predicted despite slight variances in freestream Mach number between runs and a slightly lower tested altitude.
- An active-constraint logic for nonlinear programmingDas, Alok (Virginia Polytechnic Institute and State University, 1982)The choice of active-constraint logic for screening inequalities has a major impact on the performance of gradient-projection method. It has been found that least-constrained strategies, which keep the number of constraints in the active set as small as possible, are computationally most efficient. However, these strategies are often prone to cycling of constraints between active and inactive status. This occurs mainly due to the violation of some of the constraints, taken as inactive, by the resulting step. This research develops methods for choosing an active set such that constraints in the active set satisfy the Kuhn-Tucker conditions and the resulting step does not violate the linear approximations to any of the constraints satisfied as equalities but considered inactive. Some of the existing active-constraint logics, specifically the dual-violator rule, yield the desired active set when two constraints are satisfied as equalities. However, when three or more constraints are satisfied as equalities, none of the existing logics give the desired active set. A number of general results, which help in the selection of the active set, have been developed in this research. An active-constraint logic has been developed for the case of three constraints. This logic gives the desired active-set. For the general case, when more than three constraints are satisfied as equalities, a separate active-set logic is suggested. This guarantees the nonviolation of the linear approximations to any of the constraints, taken as inactive, by the resulting step. The resulting active-set may not, however, satisfy the Kuhn-Tucker conditions. The efficiency of the proposed logic was tested computationally using quadratic programming problems. Three existing active-set strategies were used for comparision. The proposed logic almost always performed as well or better than the best among the three existing active-set strategies.
- Actuator-Work Concepts Applied to Morphing and Conventional Aerodynamic Control DevicesJohnston, Christopher Owen (Virginia Tech, 2003-11-14)The research presented in this thesis examines the use of an estimated "actuator work" value as a performance parameter for the comparison of various aerodynamic control device configurations. This estimated "actuator work," or practical work as it will be referred to as in this thesis, is based on the aerodynamic and structural resistance to a control surface deflection. It is meant to represent the actuator energy cost required to deflect a general configuration of conventional or unconventional control surface. Thin airfoil theory is used to predict the aerodynamic load distribution required for this work calculation. The details of applying thin airfoil theory to many different types of control surface arrangements are presented. Convenient equations for the aerodynamic load distributions and aerodynamic coefficients are obtained. Using the developed practical work equations, and considering only the aerodynamic load component, the practical work required for a given change in lift is compared between different control surface arrangements. For single control surface cases, it is found that a quadratic (morphing) trailing edge flap requires less practical work than a linear flap of the same size. As the angle of attack at which the change in lift occurs increases, the benefit of the quadratic flap becomes greater. For multiple control surface cases, it is necessary to determine the set of control deflections that require the minimum practical work for a given change in lift. For small values of the initial angle of attack, it is found that a two-segment quadratic trailing edge flap (MTE) requires more work than a two-segment linear flap (TETAB). But, above a small value of angle of attack, the MTE case becomes superior to the TETAB case. Similar results are found when a 1-DOF static aeroelastic model is included in the calculation. The minimum work control deflections for the aeroelastic cases are shown to be strongly dependent on the dynamic pressure.
- Adaptive Control of Nonaffine Systems with Applications to Flight ControlYoung, Amanda (Virginia Tech, 2006-05-05)Traditional flight control design is based on linearization of the equations of motion around a set of trim points and scheduling gains of linear (optimal) controllers around each of these points to meet performance specifications. For high angle of attack maneuvers and other aggressive flight regimes (required for fighter aircraft for example), the dynamic nonlinearities are dependent not only on the states of the system, but also on the control inputs. Hence, the conventional linearization-based logic cannot be straightforwardly extended to these flight regimes, and non-conventional approaches are required to extend the flight envelope beyond the one achievable by gain-scheduled controllers. Due to the nonlinear-in-control nature of the dynamical system in aggressive flight maneuvers, well-known dynamic inversion methods cannot be applied to determine the explicit form of the control law. Additionally, the aerodynamic uncertainties, typical for such regimes, are poorly modelled, and therefore there is a great need for adaptive control methods to compensate for dynamic instabilities. In this thesis, we present an adaptive control design method for both short-period and lateral/directional control of a fighter aircraft. The approach uses a specialized set of radial basis function approximators and Lyapunov-based adaptive laws to estimate the unknown nonlinearities. The adaptive controller is defined as a solution of fast dynamics, which verifies the assumptions of Tikhonov's theorem from singular perturbations theory. Simulations illustrate the theoretical findings.
- Adaptive Controller Development and Evaluation for a 6DOF Controllable MultirotorFurgiuele, Theresa Chung Wai (Virginia Tech, 2022-10-03)The omnicopter is a small unmanned aerial vehicle capable of executing decoupled translational and rotational motion (six degree of freedom, 6DOF, motion). The development of controllers for various 6DOF controllable multirotors has been much more limited than development for quadrotors, which makes selecting a controller for a 6DOF multirotor difficult. The omnicopter is subject to various uncertainties and disturbances from hardware changes, structural dynamics, and airflow, making adaptive controllers particularly interesting to investigate. The goal of this research is to design and evaluate the performance of various position and attitude controller combinations for the omnicopter, specifically focusing on adaptive controllers. Simulations are first used to compare combinations of three position controllers, PID, model reference adaptive control, augmented model reference adaptive control (aMRAC), and four attitude controllers, PI/feedback linearization (PIFL), augmented model reference adaptive control, backstepping, and adaptive backstepping (aBack). For the simulations, the omnicopter is commanded to point at and track a stationary aim point as it travels along a $C^0$ continuous trajectory and a trajectory that is $C^1$ continuous. The controllers are stressed by random disturbances and the addition of an unaccounted for suspended mass. The augmented model reference adaptive controller for position control paired with the adaptive backstepping controller for attitude control is shown to be the best controller combination for tracking various trajectories while subject to disturbances. Based on the simulation results, the PID/PIFL and aMRAC/aBack controllers are selected to be compared during three different flight tests. The first flight test is on a $C^1$ continuous trajectory while the omnicopter is commanded to point at and track a stationary aim point. The second flight test is a hover with an unmodeled added weight, and the third is a circular trajectory with a broken blade. As with the simulation results, the adaptive controller is shown to yield better performance than the nonadaptive controller for all scenarios, particularly for position tracking. With an added weight or a broken propeller, the adaptive attitude controller struggles to return to level flight, but is capable of maintaining steady flight when the nonadaptive controller tends to fail. Finally, while model reference adaptive controllers are shown to be effective, their nonlinearity can make them difficult to tune and certify via standard certification methods, such as gain and phase margin. A method for using time delay margin estimates, a potential certification metric, to tune the adaptive parameter tuning gain matrix is shown to be useful when applied to an augmented MRAC controller for a quadrotor.
- Adaptive Flight Control in the Presence of Input ConstraintsAjami, Amir Farrokh (Virginia Tech, 2005-12-02)Aerospace systems such as aircraft or missiles are subject to environmental and dynamical uncertainties. These uncertainties can alter the performance and stability of these systems. Adaptive control offers a useful means for controlling systems in the presence of uncertainties. However, very often adaptive controllers require more control effort than the actuator limits allow. In this thesis the original work of others on single input single output adaptive control in the presence of actuator amplitude limits is extended to multi-input systems. The Lyapunov based stability analysis is presented. Finally, the resultant technique is applied to aircraft and missile longitudinal motion. Simulation results show satisfactory tracking of the states of modified reference system.
- Addition of Features to an Existing MDO Model for ContainershipsDasgupta, Amlan (Virginia Tech, 2001-05-10)Traditionally, the "Design Spiral" is used for the design of ships. The design spiral endorses the concept that the design process is sequential and iterative. Though this procedure was very effective over the years, the current trend of engineering demands that more stress be put on the exploration of optimum design. With the advancement of computing technologies, the onus has shifted from finding better calculation schemes to formulating an economically viable design scheme. One of the objects of the FIRST project funded by MARITECH was to develop a computer tool to give the best ship design using optimization techniques. This was entrusted to the Department of Aerospace and Ocean Engineering at Virginia Polytechnic Institute and State University in Blacksburg, Virginia. A container ship was chosen as the test case. The problem was tackled from an owner's point of view. Hence, the required freight rate was chosen as the objective. To achieve that goal, the team developed a package that consists of three modules: optimization, geometric and a performance evaluation module. Though these modules are essentially independent, the user has control over an overall manager. He can change the initial value of design parameters, set bounds and vary constraint bounds as per his needs. Though he does not know what goes on behind the user interface, he still feels secure with the design process because he has overall control. This sense of security breaks down when he has access to limited variables and constraints. A prototype MDO tool is developed based on Microsoft's COM framework using ATL. With this design, the modules can be modified with minimum programming effort. The user interface gives the user flexibility to manipulate relevant parameters that affect the design. A geometric shape manipulation scheme is developed in which the hull form was generated by blending two hull forms. This MDO tool is used to design a container ship with the required freight rate as the objective to be minimized. It is noticed that without a structural constraint, the design tends towards one with maximum length and beam. This led to unreasonably large ratios of B/D and L/D. A B/D constraint is applied to the design to get a better structural design. Results with this constraint enabled have pointed in the direction of adding two other design variables. This constraint increases the depth of the ship. With the increase in depth, the center of gravity of the ship also rises decreasing the GM of the ship. This lowering of GM adversely affects the GM constraint. The number of tiers on deck (NTd) is made a design variable to enable the optimizer to have the flexibility of manipulating the cargo carrying capacity. It was noticed that the ship is unable to have a high NTd because of the violation of the GM constraint. Hence, ballast has also been added as a design variable to reduce the center of gravity of the ship increasing the GM of the ship. This feature enables the optimizer to carry greater cargo on deck improving the objective function. An effort is made to analyze the efficacy of the MDO tool by varying various parameters that affect the design. Technology factors have been introduced which give an insight on effect of key parameters. They also reflect on future design trends. Three evaluation tools: sensitivity analysis, alpha plots and restart option have been incorporated in the design process to gauge the results of optimization. The effect of another structural constraint L/D was also investigated. This constraint tends to bring down the overall length and is inconclusive in its results. Further analysis of this constraint is needed to draw usable conclusions. The linear response surface approximation was eliminated and the original stepwise discontinuous TEU capacity function is employed in the later examples. It was found that the minimum of the required fright rate occurred at the lower limits of length and beam on each TEU capacity platform. A systematic search of TEU plateaus in the vicinity of the primary optimum was necessary to define the secondary optimum
- Additive Manufacturing in Spacecraft Design and In-Space Robotic Fabrication of Large StructuresSpicer, Randy Lee (Virginia Tech, 2023-08-31)Additive Manufacturing (AM, 3D printing) has made significant advancements over the past decade and has become a viable alternative to traditional machining techniques. AM offers several advantages over traditional manufacturing techniques including improved geometric freedom, reduction in part lead time, cost savings, enhanced customization, mass reduction, part elimination, and remote production. There are many different AM processes with the most commonly used process being Fused Filament Fabrication (FFF). Small satellites have also made significant advancements over the past two decades with the number of missions launched annually increased by orders of magnitude over that time span. Small satellites offer several advantages compared to traditional spacecraft architectures including increased access to space, lower development costs, and disaggregated architectures. On-orbit manufacturing and assembly have become major research and development topics for government and commercial entities seeking the capability to build very large structures in space. AM is well suited on-orbit manufacturing since the process is highly automated, produces little material waste, and allows for a large degree of geometric freedom. This dissertation seeks to address three major research objectives regarding applications of additive manufacturing in space systems: demonstrate the feasibility of 3D printing an ESPA class satellite using FFF, develop a FFF 3D printer that is capable of operating in high vacuum and characterize its performance, and analyze the coupled dynamics between a satellite and a robot arm used for 3D printing in-space. This dissertation presents the design, finite element analysis, dynamic testing, and model correlation of AdditiveSat, an additively manufactured small satellite fabricated using FFF. This dissertation also presents the design, analysis, and test results for a passively cooled FFF 3D printer capable of manufacturing parts out of engineering grade thermoplastics in the vacuum of space. Finally, this dissertation presents a numerical model of a free-flying small satellite with an attached robotic arm assembly to simulate 3D printing structures on-orbit with analysis of the satellite controls required to control the dynamics of the highly coupled system.
- Advanced Instrumentation and Measurements Techniques for Near Surface FlowsCadel, Daniel R. (Virginia Tech, 2016-09-20)The development of aerodynamic boundary layers on wind turbine blades is an important consideration in their performance. It can be quite challenging to replicate full scale conditions in laboratory experiments, and advanced diagnostics become valuable in providing data not available from traditional means. A new variant of Doppler global velocimetry (DGV) known as cross-correlation DGV is developed to measure boundary layer profiles on a wind turbine blade airfoil in the large scale Virginia Tech Stability Wind Tunnel. The instrument provides mean velocity vectors with reduced sensitivity to external conditions, a velocity measurement range from 0ms^-1 to over 3000ms^-1, and an absolute uncertainty. Monte Carlo simulations with synthetic signals reveal that the processing routine approaches the Cramér-Rao lower bound in optimized conditions. A custom probe-beam technique is implanted to eliminate laser flare for measuring boundary layer profiles on a DU96-W-180 wind turbine airfoil model. Agreement is seen with laser Doppler velocimetry data within the uncertainty estimated for the DGV profile. Lessons learned from the near-wall flow diagnostics development were applied to a novel benchmark model problem incorporating the relevant physical mechanisms of the high amplitude periodic turbulent flow experienced by turbine blades in the field. The model problem is developed for experimentally motivated computational model development. A circular cylinder generates a periodic turbulent wake, in which a NACA 63215b airfoil with a chord Reynolds number Re_c = 170, 000 is embedded for a reduced frequency k = (pi)fc/V = 1.53. Measurements are performed with particle image velocimetry on the airfoil suction side and in highly magnified planes within the boundary layer. Outside of the viscous region, the Reynolds stress profile is consistent with the prediction of Rapid Distortion Theory (RDT), confirming that the redistribution of normal stresses is an inviscid effect. The fluctuating component of the phase- averaged turbulent boundary layer profiles is described using the exact solution to laminar Stokes flow. A phase lag similar to that in laminar flow is observed with an additional constant phase layer in the buffer region. The phase lag is relevant for modeling the intermittent transition and separation expected at full scale.