Center for Stochastic Processes in Science and Engineering (CSPISE)
Permanent URI for this community
Browse
Browsing Center for Stochastic Processes in Science and Engineering (CSPISE) by Subject "conservative"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Driven diffusive systems: How steady states depend on dynamicsKwak, W.; Landau, D. P.; Schmittmann, Beate (American Physical Society, 2004-06)In contrast to equilibrium systems, nonequilibrium steady states depend explicitly on the underlying dynamics. Using Monte Carlo simulations with Metropolis, Glauber, and heat bath rates, we illustrate this expectation for an Ising lattice gas, driven far from equilibrium by an "electric" field. While heat bath and Glauber rates generate essentially identical data for structure factors and two-point correlations, Metropolis rates give noticeably weaker correlations, as if the "effective" temperature were higher in the latter case. We also measure energy histograms and define a simple ratio which is exactly known and closely related to the Boltzmann factor for the equilibrium case. For the driven system, the ratio probes a thermodynamic derivative which is found to be dependent on dynamics.
- Steady states of a nonequilibrium lattice gasLyman, E.; Schmittmann, Beate (American Physical Society, 2005-09)We present a Monte Carlo study of a lattice gas driven out of equilibrium by a local hopping bias. Sites can be empty or occupied by one of two types of particles, which are distinguished by their response to the hopping bias. All particles interact via excluded volume and a nearest-neighbor attractive force. The main result is a phase diagram with three phases: a homogeneous phase and two distinct ordered phases. Continuous boundaries separate the homogeneous phase from the ordered phases, and a first-order line separates the two ordered phases. The three lines merge in a nonequilibrium bicritical point.