Journal Articles, Multidisciplinary Digital Publishing Institute (MDPI)
Permanent URI for this collection
Browse
Browsing Journal Articles, Multidisciplinary Digital Publishing Institute (MDPI) by Title
Now showing 1 - 20 of 1807
Results Per Page
Sort Options
- 13C-Metabolic Flux Analysis: An Accurate Approach to Demystify Microbial Metabolism for Biochemical ProductionGuo, Weihua; Sheng, Jiayuan; Feng, Xueyang (MDPI, 2015-12-25)Metabolic engineering of various industrial microorganisms to produce chemicals, fuels, and drugs has raised interest since it is environmentally friendly, sustainable, and independent of nonrenewable resources. However, microbial metabolism is so complex that only a few metabolic engineering efforts have been able to achieve a satisfactory yield, titer or productivity of the target chemicals for industrial commercialization. In order to overcome this challenge, 13C Metabolic Flux Analysis (13C-MFA) has been continuously developed and widely applied to rigorously investigate cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, many 13C-MFA studies have been performed in academic labs and biotechnology industries to pinpoint key issues related to microbe-based chemical production. Insightful information about the metabolic rewiring has been provided to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this review, we will introduce the basics of 13C-MFA and illustrate how 13C-MFA has been applied via integration with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production for various host microorganisms
- The 2019 Conference on Health and Active Transportation: Research Needs and OpportunitiesBerrigan, David; Dannenberg, Andrew L.; Lee, Michelle; Rodgers, Kelly; Wojcik, Janet R.; Wali, Behram; Tribby, Calvin P.; Buehler, Ralph; Sallis, James F.; Roberts, Jennifer D.; Steedly, Ann; Peng, Binbin; Eisenberg, Yochai; Rodriguez, Daniel A. (MDPI, 2021-11-11)Active transportation (AT) is widely viewed as an important target for increasing participation in aerobic physical activity and improving health, while simultaneously addressing pollution and climate change through reductions in motor vehicular emissions. In recent years, progress in increasing AT has stalled in some countries and, furthermore, the coronavirus (COVID-19) pandemic has created new AT opportunities while also exposing the barriers and health inequities related to AT for some populations. This paper describes the results of the December 2019 Conference on Health and Active Transportation (CHAT) which brought together leaders from the transportation and health disciplines. Attendees charted a course for the future around three themes: Reflecting on Innovative Practices, Building Strategic Institutional Relationships, and Identifying Research Needs and Opportunities. This paper focuses on conclusions of the Research Needs and Opportunities theme. We present a conceptual model derived from the conference sessions that considers how economic and systems analysis, evaluation of emerging technologies and policies, efforts to address inclusivity, disparities and equity along with renewed attention to messaging and communication could contribute to overcoming barriers to development and use of AT infrastructure. Specific research gaps concerning these themes are presented. We further discuss the relevance of these themes considering the pandemic. Renewed efforts at research, dissemination and implementation are needed to achieve the potential health and environmental benefits of AT and to preserve positive changes associated with the pandemic while mitigating negative ones.
- 6G Enabled Smart Infrastructure for Sustainable Society: Opportunities, Challenges, and Research RoadmapImoize, Agbotiname Lucky; Adedeji, Oluwadara; Tandiya, Nistha; Shetty, Sachin (MDPI, 2021-03-02)The 5G wireless communication network is currently faced with the challenge of limited data speed exacerbated by the proliferation of billions of data-intensive applications. To address this problem, researchers are developing cutting-edge technologies for the envisioned 6G wireless communication standards to satisfy the escalating wireless services demands. Though some of the candidate technologies in the 5G standards will apply to 6G wireless networks, key disruptive technologies that will guarantee the desired quality of physical experience to achieve ubiquitous wireless connectivity are expected in 6G. This article first provides a foundational background on the evolution of different wireless communication standards to have a proper insight into the vision and requirements of 6G. Second, we provide a panoramic view of the enabling technologies proposed to facilitate 6G and introduce emerging 6G applications such as multi-sensory–extended reality, digital replica, and more. Next, the technology-driven challenges, social, psychological, health and commercialization issues posed to actualizing 6G, and the probable solutions to tackle these challenges are discussed extensively. Additionally, we present new use cases of the 6G technology in agriculture, education, media and entertainment, logistics and transportation, and tourism. Furthermore, we discuss the multi-faceted communication capabilities of 6G that will contribute significantly to global sustainability and how 6G will bring about a dramatic change in the business arena. Finally, we highlight the research trends, open research issues, and key take-away lessons for future research exploration in 6G wireless communication.
- Ablative and Immunostimulatory Effects of Histotripsy Ablation in a Murine Osteosarcoma ModelHay, Alayna N.; Imran, Khan Mohammad; Hendricks-Wenger, Alissa; Gannon, Jessica M.; Sereno, Jacqueline; Simon, Alex; Lopez, Victor A.; Coutermarsh-Ott, Sheryl; Vlaisavljevich, Eli; Allen, Irving C.; Tuohy, Joanne L. (MDPI, 2023-10-09)Background: Osteosarcoma (OS) is the most frequently occurring malignant bone tumor in humans, primarily affecting children and adolescents. Significant advancements in treatment options for OS have not occurred in the last several decades, and the prognosis remains grim with only a 70% rate of 5-year survival. The objective of this study was to investigate the focused ultrasound technique of histotripsy as a novel, noninvasive treatment option for OS. Methods: We utilized a heterotopic OS murine model to establish the feasibility of ablating OS tumors with histotripsy in a preclinical setting. We investigated the local immune response within the tumor microenvironment (TME) via immune cell phenotyping and gene expression analysis. Findings: We established the feasibility of ablating heterotopic OS tumors with ablation characterized microscopically by loss of cellular architecture in targeted regions of tumors. We observed greater populations of macrophages and dendritic cells within treated tumors and the upregulation of immune activating genes 72 h after histotripsy ablation. Interpretation: This study was the first to investigate histotripsy ablation for OS in a preclinical murine model, with results suggesting local immunomodulation within the TME. Our results support the continued investigation of histotripsy as a novel noninvasive treatment option for OS patients to improve clinical outcomes and patient prognosis.
- Above- and Below-Ground Carbon Sequestration in Shelterbelt Trees in Canada: A ReviewMayrinck, Rafaella C.; Laroque, Colin P.; Amichev, Beyhan Y.; Van Rees, Ken (MDPI, 2019-10-19)Shelterbelts have been planted around the world for many reasons. Recently, due to increasing awareness of climate change risks, shelterbelt agroforestry systems have received special attention because of the environmental services they provide, including their greenhouse gas (GHG) mitigation potential. This paper aims to discuss shelterbelt history in Canada, and the environmental benefits they provide, focusing on carbon sequestration potential, above- and below-ground. Shelterbelt establishment in Canada dates back to more than a century ago, when their main use was protecting the soil, farm infrastructure and livestock from the elements. As minimal-and no-till systems have become more prevalent among agricultural producers, soil has been less exposed and less vulnerable to wind erosion, so the practice of planting and maintaining shelterbelts has declined in recent decades. In addition, as farm equipment has grown in size to meet the demands of larger landowners, shelterbelts are being removed to increase efficiency and machine maneuverability in the field. This trend of shelterbelt removal prevents shelterbelt’s climate change mitigation potential to be fully achieved. For example, in the last century, shelterbelts have sequestered 4.85 Tg C in Saskatchewan. To increase our understanding of carbon sequestration by shelterbelts, in 2013, the Government of Canada launched the Agricultural Greenhouse Gases Program (AGGP). In five years, 27 million dollars were spent supporting technologies and practices to mitigate GHG release on agricultural land, including understanding shelterbelt carbon sequestration and to encourage planting on farms. All these topics are further explained in this paper as an attempt to inform and promote shelterbelts as a climate change mitigation tool on agricultural lands.
- Accelerometer Based Method for Tire Load and Slip Angle EstimationSingh, Kanwar Bharat; Taheri, Saied (MDPI, 2019-04-28)Tire mounted sensors are emerging as a promising technology, capable of providing information about important tire states. This paper presents a survey of the state-of-the-art in the field of smart tire technology, with a special focus on the different signal processing techniques proposed by researchers to estimate the tire load and slip angle using tire mounted accelerometers. Next, details about the research activities undertaken as part of this study to develop a smart tire are presented. Finally, novel algorithms for estimating the tire load and slip angle are presented. Experimental results demonstrate the effectiveness of the proposed algorithms.
- Accession-Level Differentiation of Urushiol Levels, and Identification of Cardanols in Nascent Emerged Poison Ivy SeedlingsLott, Aneirin A.; Baklajian, Emily R.; Dickinson, Christopher C.; Collakova, Eva; Jelesko, John G. (MDPI, 2019-11-20)Poison ivy (Toxicodendron radicans (L.) Kuntze) shows accession-level differentiation in a variety of morphometric traits, suggesting local adaptation. To investigate whether the presumed defense compound urushiol also demonstrates accession-level accumulation differences, in vitro nascent germinated poison ivy seedlings from geographically isolated populations were germinated in vitro and then assayed for known urushiol congener accumulation levels. Significant accession-level differences in the accumulation levels of total C15- and C17-, total C15-, total C17-, specific C15 congeners, and specific C17 congeners of urushiol were identified. In addition, hereto novel C15- and C17-urushiol isomers were identified as well. Cardanols are assumed to be the penultimate metabolites giving rise to urushiols, but this assumption was not previously empirically validated. C15-cardanol congeners and isomers corresponding to expected substrates needed to produce the observed C15-urushiol congeners and isomers were identified in the same poison ivy seedling extracts. Total C15-cardanol and C15-cardanol congeners also showed significant accession-level differences. Based on the observed C15-cardanol congeners in poison ivy, the penultimate step in urushiol biosynthesis was proposed to be a cardanol-specific hydroxylase activity.
- Accuracy Improvement of Vehicle Recognition by Using Smart Device SensorsPias, Tanmoy Sarkar; Eisenberg, David; Fresneda Fernandez, Jorge (MDPI, 2022-06-10)This paper explores the utilization of smart device sensors for the purpose of vehicle recognition. Currently a ubiquitous aspect of people’s lives, smart devices can conveniently record details about walking, biking, jogging, and stepping, including physiological data, via often built-in phone activity recognition processes. This paper examines research on intelligent transportation systems to uncover how smart device sensor data may be used for vehicle recognition research, and fit within its growing body of literature. Here, we use the accelerometer and gyroscope, which can be commonly found in a smart phone, to detect the class of a vehicle. We collected data from cars, buses, trains, and bikes using a smartphone, and we designed a 1D CNN model leveraging the residual connection for vehicle recognition. The model achieved more than 98% accuracy in prediction. Moreover, we also provide future research directions based on our study.
- Acetylcholine Receptor Activation as a Modulator of Glioblastoma InvasionThompson, Emily G.; Sontheimer, Harald (MDPI, 2019-10-05)Grade IV astrocytomas, or glioblastomas (GBMs), are the most common malignant primary brain tumor in adults. The median GBM patient survival of 12–15 months has remained stagnant, in spite of treatment strategies, making GBMs a tremendous challenge clinically. This is at least in part due to the complex interaction of GBM cells with the brain microenvironment and their tendency to aggressively infiltrate normal brain tissue. GBMs frequently invade supratentorial brain regions that are richly innervated by neurotransmitter projections, most notably acetylcholine (ACh). Here, we asked whether ACh signaling influences the biology of GBMs. We examined the expression and function of known ACh receptors (AChRs) in large GBM datasets, as well as, human GBM cell lines and patient-derived xenograft lines. Using RNA-Seq data from the “The Cancer Genome Atlas” (TCGA), we confirmed the expression of AChRs and demonstrated the functionality of these receptors in GBM cells with time-lapse calcium imaging. AChR activation did not alter cell proliferation or migration, however, it significantly increased cell invasion through complex extracellular matrices. This was due to the enhanced activity of matrix metalloproteinase-9 (MMP-9) from GBM cells, which we found to be dependent on an intracellular calcium-dependent mechanism. Consistent with these findings, AChRs were significantly upregulated in regions of GBM infiltration in situ (Ivy Glioblastoma Atlas Project) and elevated expression of muscarinic AChR M3 correlated with reduced patient survival (TCGA). Data from the Repository for Molecular Brain Neoplasia Data (REMBRANDT) dataset also showed the co-expression of choline transporters, choline acetyltransferase, and vesicular acetylcholine transporters, suggesting that GBMs express all the proteins required for ACh synthesis and release. These findings identify ACh as a modulator of GBM behavior and posit that GBMs may utilize ACh as an autocrine signaling molecule.
- Acid and Volatiles of Commercially-Available Lambic BeersThompson Witrick, Katherine; Duncan, Susan E.; Hurley, E. Kenneth; O'Keefe, Sean F. (MDPI, 2017-10-26)Lambic beer is the oldest style of beer still being produced in the Western world using spontaneous fermentation. Gueuze is a style of lambic beer prepared by mixing young (one year) and older (two to three years) beers. Little is known about the volatiles and semi-volatiles found in commercial samples of gueuze lambic beers. SPME was used to extract the volatiles from nine different brands of lambic beer. GC-MS was used for the separation and identification of the compounds extracted with SPME. The pH and color were measured using standard procedures. A total of 50 compounds were identified in the nine brands. Seventeen of the 50 compounds identified have been previously identified. The compounds identified included a number of different chemical groups such as acids, alcohols, phenols, ketones, aldehydes, and esters. Ethyl acetate, 4-ethylphenol, and 4-ethylguaiacol are known by-products of the yeast, Brettanomyces, which is normally a spoilage microorganism in beer and wine, but important for the flavor characteristics of lambic beer. There were no differences in pH, but there were differences in color between the beer samples.
- Acoustic Emission Wave Velocity Measurement of Asphalt Mixture by Arbitrary Wave MethodLi, Jianfeng; Liu, Huifang; Wang, Wentao; Zhao, Kang; Ye, Zhoujing; Wang, Linbing (MDPI, 2021-09-13)The wave velocity of acoustic emission (AE) can reflect the properties of materials, the types of AE sources and the propagation characteristics of AE in materials. At the same time, the wave velocity of AE is also an important parameter in source location calculation by the time-difference method. In this paper, a new AE wave velocity measurement method, the arbitrary wave (AW) method, is proposed and designed to measure the AE wave velocity of an asphalt mixture. This method is compared with the pencil lead break (PLB) method and the automatic sensor test (AST) method. Through comparison and analysis, as a new wave velocity measurement method of AE, the AW method shows the following advantages: A continuous AE signal with small attenuation, no crosstalk and a fixed waveform can be obtained by the AW method, which is more advantageous to distinguish the first arrival time of the acoustic wave and calculate the wave velocity of AE more accurately; the AE signal measured by the AW method has the characteristics of a high frequency and large amplitude, which is easy to distinguish from the noise signal with the characteristics of a low frequency and small amplitude; and the dispersion of the AE wave velocity measured by the AW method is smaller, which is more suitable for the measurement of the AE wave velocity of an asphalt mixture.
- Acoustic Energy Harvesting and Sensing via Electrospun PVDF Nanofiber MembraneShehata, Nader; Hassanin, Ahmed H.; Elnabawy, Eman; Nair, Remya; Bhat, Sameer A.; Kandas, Ishac (MDPI, 2020-05-31)This paper introduces a new usage of piezoelectric poly (vinylidene fluoride) (PVDF) electrospun nanofiber (NF) membrane as a sensing unit for acoustic signals. In this work, an NF mat has been used as a transducer to convert acoustic signals into electric voltage outcomes. The detected voltage has been analyzed as a function of both frequency and amplitude of the excitation acoustic signal. Additionally, the detected AC signal can be retraced as a function of both frequency and amplitude with some wave distortion at relatively higher amplitudes and within a certain acoustic spectrum region. Meanwhile, the NFs have been characterized through piezoelectric responses, beta sheet calculations and surface morphology. This work is promising as a low-cost and innovative solution to harvest acoustic signals coming from wide resources of sound and noise.
- Activation of SsoPK4, an Archaeal eIF2α Kinase Homolog, by Oxidized CoARay, William K.; Potters, Mark B.; Haile, January D.; Kennelly, Peter J. (MDPI, 2015-05-15)The eukaryotic protein kinase (ePK) paradigm provides integral components for signal transduction cascades throughout nature. However, while so-called typical ePKs permeate the Eucarya and Bacteria, atypical ePKs dominate the kinomes of the Archaea. Intriguingly, the catalytic domains of the handful of deduced typical ePKs from the archaeon Sulfolobus solfataricus P2 exhibit significant resemblance to the protein kinases that phosphorylate translation initiation factor 2α (eIF2α) in response to cellular stresses. We cloned and expressed one of these archaeal eIF2α protein kinases, SsoPK4. SsoPK4 exhibited protein-serine/threonine kinase activity toward several proteins, including the S. solfataricus homolog of eIF2α, aIF2α. The activity of SsoPK4 was inhibited in vitro by 3ʹ,5ʹ-cyclic AMP (Ki of ~23 µM) and was activated by oxidized Coenzyme A, an indicator of oxidative stress in the Archaea. Activation enhanced the apparent affinity for protein substrates, Km, but had little effect on Vmax. Autophosphorylation activated SsoPK4 and rendered it insensitive to oxidized Coenzyme A.
- Activity Patterns of Cave-Dwelling Bat Species during Pre-Hibernation Swarming and Post-Hibernation Emergence in the Central AppalachiansMuthersbaugh, Michael S.; Ford, W. Mark; Silvis, Alexander; Powers, Karen E. (MDPI, 2019-09-06)In North America, bat research efforts largely have focused on summer maternity colonies and winter hibernacula, leaving the immediate pre- and post-hibernation ecology for many species unstudied. Understanding these patterns and processes is critical for addressing potential additive impacts to White-nose Syndrome (WNS)-affected bats, as autumn is a time of vital weight gain and fat resources are largely depleted in early spring in surviving individuals. Our study sought to examine autumn and spring bat activity patterns in the central Appalachian Mountains around three hibernacula to better understand spatio-temporal patterns during staging for hibernation and post-hibernation migration in the post-WNS environment. From early September through November 2015 and 2016, and from early March through April 2016 and 2017, we assessed the effects of distance to hibernacula and ambient conditions on nightly bat activity for Myotis spp. and big brown bats (Eptesicus fuscus) using zero-crossing frequency division bat detectors near cave entrances and 1 km, 2 km, and 3 km distant from caves. Following identification of echolocation calls, we used generalized linear mixed effects models to examine patterns of activity across the landscape over time and relative to weather. Overall bat activity was low at all sample sites during autumn and spring periods except at sites closest to hibernacula. Best-supported models describing bat activity varied, but date and ambient temperatures generally appeared to be major drivers of activity in both seasons. Total activity for all species had largely ceased by mid-November. Spring bat activity was variable across the sampling season, however, some activity was observed as early as mid-March, almost a month earlier than the historically accepted emergence time regionally. Current timing of restrictions on forest management activities that potentially remove day-roosts near hibernacula when bats are active on the landscape may be mismatched with actual spring post-hibernation emergence. Adjustments to the timing of these restrictions during the spring may help to avoid potentially additive negative impacts on WNS-impacted bat species.
- Adaptive Crop Management under Climate Uncertainty: Changing the Game for Sustainable Water UseMyint, Soe W.; Aggarwal, Rimjhim; Zheng, Baojuan; Wentz, Elizabeth A.; Holway, Jim; Fan, Chao; Selover, Nancy J.; Wang, Chuyuan; Fischer, Heather A. (MDPI, 2021-08-23)Water supplies are projected to become increasingly scarce, driving farmers, energy producers, and urban dwellers towards an urgent and emerging need to improve the effectiveness and the efficiency of water use. Given that agricultural water use is the largest water consumer throughout the U.S. Southwest, this study sought to answer two specific research questions: (1) How does water consumption vary by crop type on a metropolitan spatial scale? (2) What is the impact of drought on agricultural water consumption? To answer the above research questions, 92 Landsat images were acquired to generate fine-resolution daily evapotranspiration (ET) maps at 30 m spatial resolution for both dry and wet years (a total of 1095 ET maps), and major crop types were identified for the Phoenix Active Management Area. The study area has a subtropical desert climate and relies almost completely on irrigation for farming. Results suggest that there are some factors that farmers and water managers can control. During dry years, crops of all types use more water. Practices that can offset this higher water use include double or multiple cropping practice, drought tolerant crop selection, and optimizing the total farmed area. Double and multiple cropping practices result in water savings because soil moisture is retained from one planting to another. Further water savings occur when drought tolerant crop types are selected, especially in dry years. Finally, disproportionately large area coverage of high water consuming crops can be balanced and/or reduced or replaced with more water efficient crops. This study provides strong evidence that water savings can be achieved through policies that create incentives for adopting smart cropping strategies, thus providing important guidelines for sustainable agriculture management and climate adaptation to improve future food security.
- Adaptive Traffic Signal Control: Game-Theoretic Decentralized vs. Centralized Perimeter ControlElouni, Maha; Abdelghaffar, Hossam M.; Rakha, Hesham A. (MDPI, 2021-01-03)This paper compares the operation of a decentralized Nash bargaining traffic signal controller (DNB) to the operation of state-of-the-art adaptive and gating traffic signal control. Perimeter control (gating), based on the network fundamental diagram (NFD), was applied on the borders of a protected urban network (PN) to prevent and/or disperse traffic congestion. The operation of gating control and local adaptive controllers was compared to the operation of the developed DNB traffic signal controller. The controllers were implemented and their performance assessed on a grid network in the INTEGRATION microscopic simulation software. The results show that the DNB controller, although not designed to solve perimeter control problems, successfully prevents congestion from building inside the PN and improves the performance of the entire network. Specifically, the DNB controller outperforms both gating and non-gating controllers, with reductions in the average travel time ranging between 21% and 41%, total delay ranging between 40% and 55%, and emission levels/fuel consumption ranging between 12% and 20%. The results demonstrate statistically significant benefits of using the developed DNB controller over other state-of-the-art centralized and decentralized gating/adaptive traffic signal controllers.
- Additive Friction Stir-Enabled Solid-State Additive Manufacturing for the Repair of 7075 Aluminum AlloyGriffiths, R. Joey; Petersen, Dylan T.; Garcia, David; Yu, Hang Z. (MDPI, 2019-08-23)The repair of high strength, high performance 7075 aluminum alloy is essential for a broad range of aerospace and defense applications. However, it is challenging to implement it using traditional fusion welding-based approaches, owing to hot cracking and void formation during solidification. Here, the use of an emerging solid-state additive manufacturing technology, additive friction stir deposition, is explored for the repair of volume damages such as through -holes and grooves in 7075 aluminum alloy. Three repair experiments have been conducted: double through-hole filling, single through-hole filling, and long, wide-groove filling. In all experiments, additive friction stir deposition proves to be effective at filling the entire volume. Additionally, sufficient mixing between the deposited material and the side wall of the feature is always observed in the upper portions of the repair. Poor mixing and inadequate repair quality have been observed in deeper portions of the filling in some scenarios. Based on these observations, the advantages and disadvantages of using additive friction stir deposition for repairing volume damages are discussed. High quality and highly flexible repairs are expected with systematic optimization work on process control and repair strategy development in the future.
- Addressing Inequality: The First Step Beyond COVID-19 and Towards SustainabilityAshford, Nicholas A.; Hall, Ralph P.; Arango-Quiroga, Johan; Metaxas, Kyriakos A.; Showalter, Amy L. (MDPI, 2020-07-03)The COVID-19 pandemic has impacted billions of lives across the world and has revealed and worsened the social and economic inequalities that have emerged over the past several decades. As governments consider public health and economic strategies to respond to the crisis, it is critical they also address the weaknesses of their economic and social systems that inhibited their ability to respond comprehensively to the pandemic. These same weaknesses have also undermined efforts to advance equality and sustainability. This paper explores over 30 interventions across the following nine categories of change that hold the potential to address inequality, provide all citizens with access to essential goods and services, and advance progress towards sustainability: (1) Income and wealth transfers to facilitate an equitable increase in purchasing power/disposable income; (2) broadening worker and citizen ownership of the means of production and supply of services, allowing corporate profit-taking to be more equitably distributed; (3) changes in the supply of essential goods and services for more citizens; (4) changes in the demand for more sustainable goods and services desired by people; (5) stabilizing and securing employment and the workforce; (6) reducing the disproportionate power of corporations and the very wealthy on the market and political system through the expansion and enforcement of antitrust law such that the dominance of a few firms in critical sectors no longer prevails; (7) government provision of essential goods and services such as education, healthcare, housing, food, and mobility; (8) a reallocation of government spending between military operations and domestic social needs; and (9) suspending or restructuring debt from emerging and developing countries. Any interventions that focus on growing the economy must also be accompanied by those that offset the resulting compromises to health, safety, and the environment from increasing unsustainable consumption. This paper compares and identifies the interventions that should be considered as an important foundational first step in moving beyond the COVID-19 pandemic and towards sustainability. In this regard, it provides a comprehensive set of strategies that could advance progress towards a component of Sustainable Development Goal (SDG) 10 to reduce inequality within countries. However, the candidate interventions are also contrasted with all 17 SDGs to reveal potential problem areas/tradeoffs that may need careful attention.
- Adoption and Impacts of Integrated Pest Management in Bangladesh: Evidence from Smallholder Bitter Gourd GrowersRahman, Md. Sadique; Norton, George W. (MDPI, 2019-04-17)Determinants of integrated pest management (IPM) adoption, productivity and efficiency of bitter gourd (Momordica charantia L.) growers in Bangladesh were jointly measured using propensity score matching (PSM), sample selection stochastic frontier production function (SFPF) and inverse probability weighted regression adjustment (IPWRA) techniques. The significant value (P < 0.05) of the selectivity variable (ρ(w,v)) coefficient justifies the use of the sample selection SFPF. The decision to adopt IPM was positively influenced by the training and other farmers’ decisions to adopt. Mean technical efficiency (MTE) was found to be significantly higher for adopters (0.59) compared to non-adopters (0.40). The MTE analysis suggests that arranging more training sessions and making farmers more familiar with the IPM practices would improve the technical efficiency of the growers. Adoption of IPM practices significantly reduced the number pesticide applications, which imply environmental benefits from their adoption.
- Adsorption of Extracellular Polymeric Substances Derived from S. cerevisiae to Ceria Nanoparticles and the Effects on Their Colloidal StabilityMasaki, Shota; Nakano, Yuriko; Ichiyoshi, Kenta; Kawamoto, Keisuke; Takeda, Ayaka; Ohnuki, Toshihiko; Hochella, Michael F. Jr.; Utsunomiya, Satoshi (MDPI, 2017-07-11)In order to understand the adsorption preferences of extracellular polymeric substances (EPS) components derived from fungus Saccharomyces cerevisiae on sparingly soluble CeO2 nanoparticles (CeNPs), the adsorption experiments of the EPS including organic matter with low molecular weight have been performed at pH 6.0 at room temperature (25 ± 1 °C). The subsequent effects of the coating on the dispersibility of CeNPs was systematically measured as a function of time and ionic strength ranging from 1 to 1000 mmol L−1. Among the EPS and other components, orthophosphate and saccharides preferentially adsorb onto CeNPs, and proteins are the only major N-compounds adsorbing onto the CeNP surfaces. Adsorption of orthophosphate resulted in a dramatic decrease in ζ potential to −40 mV at pH > 5, whereas the EPS adsorption suppressed the deviation of ζ potential within a narrow range (−20–+20 mV) at pHs ranging from 3 to 11. Critical aggregation concentrations (CAC) of an electrolyte (NaCl), inorganic orthophosphate, and EPS solutions are 0.01, 0.14, and 0.25 mol L−1, respectively, indicating that the EPS adsorption suppresses aggregation of CeNPs by the electrostatic repulsive forces derived from the adsorbed orthophosphate and the steric barrier formed by organic matter on the nanoparticle surfaces. Therefore, the EPS derived from fungus S. cerevisiae can potentially enhance colloidal dispersibility of CeNPs at circumneutral pH.