College of Engineering (COE)
Permanent URI for this community
Note: The Department of Biological Systems Engineering is listed within the College of Agriculture and Life Sciences (CALS).
Browse
Browsing College of Engineering (COE) by Content Type "Book review"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Race, Rigor, and Selectivity in US Engineering: The History of an Occupational Color LineBorrego, Maura Jenkins (Johns Hopkins Univ Press, 2011)
- Re‐envisioning stormwater infrastructure for ultrahazardous floodingSanders, Brett F.; Grant, Stanley B. (Wiley, 2020-03)Ultrahazardous flooding (UHF) occurs on low relief topography at the foot of mountain catchments and is characterized by rapid-onset, high-velocity flood flows, large fluxes of sediment and debris, and unpredictable flow paths. 20th century stormwater infrastructure seeks to contain UHF, up to a design level, using combinations of basins, reservoirs and flood control channels. However, these flood control elements may increase the risk of disasters due to: (a) increasingly frequent and intense wildfires that amplify streamflow and debris fluxes beyond infrastructure design capacity; (b) aging and underfunded infrastructure which is susceptible to clogging and failure during extreme events; and (c) expansive urban development where communities are relatively heavily on gray (hardened “levee effect.” 20th century stormwater infrastructure for UHF has also left communities with a legacy of social and environmental challenges including poor water quality, degraded habitats, high maintenance costs, unrealized urban amenities, and altered sediment fluxes. Adopting the Los Angeles Metropolitan Region as a type-locality for UHF, we propose a new paradigm for stormwater infrastructure based on the concept of erodible flood corridors. Our vision aims for greater sustainability and resilience to extreme events based on congruency with natural processes, conservation of resources and associated ecosystem services, minimization of flood exposure and vulnerability, and avoidance of legacy risk and energy intensive practices.
- The viability of SARS-CoV-2 on solid surfacesHosseini, Mohsen; Behzadinasab, Saeed; Benmamoun, Zachary; Ducker, William A. (Elsevier, 2021-10-01)The COVID-19 pandemic had a major impact on life in 2020 and 2021. One method of transmission occurs when the causative virus, SARS-CoV-2, contaminates solids. Understanding and controlling the interaction with solids is thus potentially important for limiting the spread of the disease. We review work that describes the prevalence of the virus on common objects, the longevity of the virus on solids, and surface coatings that are designed to inactivate the virus. Engineered coatings have already succeeded in producing a large reduction in viral infectivity from surfaces. We also review work describing inactivation on facemasks and clothing and discuss probable mechanisms of inactivation of the virus at surfaces.