Charles E. Via Jr. Department of Civil and Environmental Engineering
Permanent URI for this community
The Charles E. Via, Jr. Department of Civil and Environmental Engineering, which is ranked in the top 10 accredited civil and environmental engineering departments by the US News and World Report survey, is one of the largest programs in the United States. The Department has 46 full-time faculty, 657 undergraduate, and 400 graduate students. Civil engineers are the principal designers, constructors, operators, and caretakers of many of the constructed facilities and systems that contribute to the high quality of life enjoyed in the United States. The Charles E. Via, Jr. Department of Civil and Environmental Engineering offers educational programs in all areas of civil engineering practice.
Browse
Browsing Charles E. Via Jr. Department of Civil and Environmental Engineering by Content Type "Article"
Now showing 1 - 20 of 28
Results Per Page
Sort Options
- Antibiotics in Agroecosystems: Introduction to the Special SectionFranklin, Alison M.; Aga, Diana S.; Cytryn, Eddie; Durso, Lisa M.; McLain, Jean E.; Pruden, Amy; Roberts, Marilyn C.; Rothrock, Michael J. Jr.; Snow, Daniel D.; Watson, John E.; Dungan, Robert S. (2016-03)The presence of antibiotic drug residues, antibiotic resistant bacteria, and antibiotic resistance genes in agroecosystems has become a significant area of research in recent years and is a growing public health concern. While antibiotics are used in both human medicine and agricultural practices, the majority of their use occurs in animal production where historically they have been used for growth promotion, in addition to the prevention and treatment of disease. The widespread use of antibiotics and the application of animal wastes to agricultural lands play major roles in the introduction of antibiotic-related contamination into the environment. Overt toxicity in organisms directly exposed to antibiotics in agroecosystems is typically not a major concern because environmental concentrations are generally lower than therapeutic doses. However, the impacts of introducing antibiotic contaminants into the environment are unknown, and concerns have been raised about the health of humans, animals, and ecosystems. Despite increased research focused on the occurrence and fate of antibiotics and antibiotic resistance over the past decade, standard methods and practices for analyzing environmental samples are limited and future research needs are becoming evident. To highlight and address these issues in detail, this special collection of papers was developed with a framework of five core review papers that address the (i) overall state of science of antibiotics and antibiotic resistance in agroecosystems using a causal model, (ii) chemical analysis of antibiotics found in the environment, (iii) need for background and baseline data for studies of antibiotic resistance in agroecosystems with a decision-making tool to assist in designing research studies, as well as (iv) culture- and (v) molecular-based methods for analyzing antibiotic resistance in the environment. With a focus on the core review papers, this introduction summarizes the current state of science for analyzing antibiotics and antibiotic resistance in agroecosystems, discusses current knowledge gaps, and develops future research priorities. This introduction also contains a glossary of terms used in the core reivew papers of this special section. The purpose of the glossary is to provide a common terminology that clearly characterizes the concepts shared throughout the narratives of each review paper.
- Boulder dislodgement during coastal storms and tsunamis: Insights from a new ensemble modelWeiss, Robert; Irish, Jennifer L.; Goodman Tchernov, Beverly (American Geophysical Union, 2022-03-01)Boulders are excellent candidate deposits to study coastal inundation events by storms and tsunamis due to their significant preservation potential. However, it is difficult to infer how and what forcing dislodged the boulder. We present a new model that enables ensemble and Monte-Carlo-type simulations to study the sensitivity of boulder, the fluid flow, and environmental parameters. Our examples show that boulder transport is complex and nonlinear, and to acknowledge the uncertainties of the boulder's preexisting transport conditions, a range of velocities and environmental parameters should be used to quantify the flow that caused boulder dislodgement.
- Effect of Silver Nanoparticles and Antibiotics on Antibiotic Resistance Genes in Anaerobic DigestionMiller, Jennifer H.; Novak, John T.; Knocke, William R.; Young, Katherine; Pruden, Amy; Hong, Yanjuan; Vikesland, Peter J.; Hull, Matthew S.; Pruden, Amy (Water Environment Federation, 2013-05)Water resource recovery facilities have been described as creating breeding ground conditions for the selection, transfer, and dissemination of antibiotic resistance genes (ARGs) among various bacteria. The objective of this study was to determine the effect of direct addition of antibiotic and silver nanoparticles (Ag NPs, or nanosilver) on the occurrence of ARGs in thermophilic anaerobic digesters. Test thermophilic digesters were amended with environmentally-relevant concentrations of Ag NP (0.01, 0.1, and 1.0 mg-Ag/L; corresponding to ≈ 0.7, 7.0, and 70 mg-Ag/kg total solids) and sulfamethoxazole (SMX) that span susceptible to resistant classifications (1, 5, and 50 mg/L) as potential selection pressures for ARGs. Tetracycline (tet(O), tet(W)) and sulfonamide (sulI, sulII) ARGs and the integrase enzyme gene (intI1) associated with Class 1 integrons were measured in raw sludge, test thermophilic digesters, a control thermophilic digester, and a control mesophilic digester. There was no apparent effect of Ag NPs on thermophilic anaerobic digester performance. The maximum SMX addition (50 mg/L) resulted in accumulation of volatile fatty acids and low pH, alkalinity, and volatile solids reduction. There was no significant difference between ARG gene copy numbers (absolute or normalized to 16S rRNA genes) in amended thermophilic digesters and the control thermophilic digester. Antibiotic resistance gene copy numbers in digested sludge ranged from 10³ to 10⁶ copies per µL (≈ 8 × 10¹ to 8 × 10⁴ copies per lg) of sludge as result of a 1-log reduction of ARGs (2- log reduction for intI1). Quantities of the five ARGs in raw sludge ranged from 10⁴ to 10⁸ copies per lL (≈ 4 × 10² to 4 × 10⁶ per lg) of sludge. Test and control thermophilic digesters (53 °C, 12-day solids retention time [SRT]) consistently reduced but did not eliminate levels of all analyzed genes. The mesophilic digester (37 °C, 20-day SRT) also reduced levels of sulI, sulII, and intI1 genes, but levels of tet(O) and tet(W) were the same or higher than in raw sludge. Antibiotic resistance gene reductions remained constant despite the application of selection pressures, which suggests that digester operating conditions are a strong governing factor of the bacterial community composition and thus the prevalence of ARGs.
- Effects of Infill Plate’s Interconnection and Boundary Element Stiffness on Steel Plate Shear Walls’ Seismic PerformancePaslar, Nima; Farzampour, Alireza (Materials, 2023-01-15)Steel plate shear walls (SPSWs) are among the most desirable load-bearing systems, which have been used wildly in various structures. Recently, designers have tended to SPSWs with only beam connections showing several problems. In the present research, several SPSWs with vari-ous types of connection conditions between infill plate and boundary elements, and various stiffness of boundary elements have been studied. The result illustrates that by having the full connection between infill plate and boundary elements, at least a 33% interconnected infill plate to columns could eliminate the significant loss of fundamental factors in SPSWs connected to beam only. Furthermore, increasing the stiffness of columns has more effect on the performance of SPSWs in comparison with beams.
- Electric versus Gasoline Vehicle Particulate Matter and Greenhouse Gas Emissions: Large-scale AnalysisRakha, Hesham A.; Farag, Mohamed; Foroutan, Hosein (2024-07-31)This study addresses the contentious issue of non-exhaust particulate matter (PM) emissions from battery electric vehicles (BEVs) compared to internal combustion engine vehicles (ICEVs) by developing models to quantify tire and brake PM emissions and incorporate them in a microscopic traffic simulation environment. Furthermore, exhaust greenhouse gas (GHG) emissions are quantified to develop a comprehensive picture of vehicle network emissions. The key findings are: 1) BEVs emit more tire and less brake PM emissions, thus necessitating a comprehensive analysis to avoid erroneous conclusions. 2) If at least 15% of travel is city driving, BEVs produce less non-exhaust PM emissions. 3) For the freeway section analyzed, a volume-to-capacity ratio of at least 0.25 is required for BEVs to produce less non-exhaust PM emissions. By incorporating these detailed models into traffic simulations, the study provides a tool for policymakers to better understand and manage vehicle emissions at a city level.
- Experimental Investigation of Sound Transmission Loss in Concrete Containing Recycled Rubber CrumbsChalangaran, Navid; Farzampour, Alireza; Paslar, Nima; Fatemi, Hadi (Technopress, 2021-05-15)This study represents procedures and material to improve sound transmission loss through concrete without having any significant effects on mechanical properties. To prevent noise pollution damaging effects, and for reducing the transmission of the noises from streets to residential buildings, sound absorbing materials could be effectively produced. For this purpose, a number of several mixture designs have been investigated in this study to reduce the sound transmission through concrete, including control sample and three mixtures with recycled rubber with sizes of from 1mm up to 3 mm to limit the sound transmission. The rubber is used as a replacement of 5, 10, and 15 percent of sand aggregates. First, 7, 14 and 28-day strengths of the concrete have been measured. Subsequently, the sound transmission losses through the samples have been measured at the range of 63 Hz up to 6300 Hz by using impedance tube and the transfer function. The results show specimens containing 15% fine-grained crumbs, the loss of sound transmission were up to 190%, and for samples with 15% coarse-grained rubber, the loss of sound transmission were up to 228%, respectively. It is shown that concrete with recycled rubber crumbs could effectively improve environmental noise absorption.
- Experimental study on the optimized design of butterfly-shaped dampersHu, Jong Wan; Wook Cha, Young; Farzampour, Alireza; Mirzai, Nadia; Mansouri, Iman (2021-01)Structural fuses are manufactured from oriented steel plates for use in seismic protective systems to withstand significant lateral shear loads. These systems are designed and detailed for concentrating the damage and excessive inelastic deformations in the desired location along the length of the fuse to prevent the crack propagation and structural issues for the surrounding elements. Among a number of structural systems with engineered - cut-outs, a recently developed butterfly-shaped structural fuses are proposed to better align the bending strength along the length of the fuse with the demand moment, enhancing controlled yielding features over the brittle behavior. Previously, the design methodologies were developed purely based on the flexural stresses’ or shear stresses’ behavior leading to underestimate or overestimate the structural capacity of the fuses. The aim of this study is to optimize the design methodologies for commonly used butterfly-shaped dampers through experimental investigations considering the stresses are not uniformly distributed stresses along the length of the fuse system. The effect of shear and flexural stresses on the behavior of butterfly-shaped are initially formulated based on the Von-Mises criterion, and the optimized geometry is specified. Subsequently, experimental tests are developed for evaluating the optimized design concepts for butterfly-shaped dampers considering the uniform stress distribution and efficient use of steel. It is shown that butterfly-shaped dampers are capable of full cyclic hysteric behavior without any major signs of strength or stiffness degradations.
- Filtration evaluation and clinical use of expired elastomeric P-100 filter cartridges during the COVID-19 pandemicPatolia, Harsh H.; Pan, Jin; Harb, Charbel; Marr, Linsey C.; Baffoe-Bonnie, Anthony W. (Cambridge University Press, 2020-05-27)To the Editor—The limited supply of more conventional disposable personal protective equipment (PPE), namely single-use N95 filtering facepiece respirators (FFRs), among hospital systems in the United States during the COVID-19 pandemic has been alleviated with the adoption of extended use and reuse policies by the Centers for Disease Control and Prevention (CDC).1 These measures, along with a variety of implemented decontamination methodologies (eg, ultraviolet germicidal irradiation, vaporized hydrogen peroxide, etc), have prolonged PPE supplies during pressing times. Another strategy adopted by the CDC and health systems to protect healthcare providers caring for COVID-19 patients and patients under investigation in limited resource settings includes the use of elastomeric FFRs with reusable cartridges. Although elastomeric respirators have not been approved by the Food and Drug Administration for fluid resistance, they have been endorsed by the CDC as reasonable alternatives for N95 FFRs during the COVID-19 pandemic due to their filtration approval by the National Institutes for Occupational and Safety Health (NIOSH).2 Subsequently, elastomeric respirators have formed a major arm of the COVID-19 pandemic response strategy in many hospital systems...
- Force-displacement behavior of a beam with butterfly-shaped dampers implementing GE programmingFarzampour, Alireza; Mansouri, Iman; Mortazavi, Seyed Javad; Hu, Jong Wan (Springer, 2020)Structural steel plates having engineered cut-outs to exhibit controlled yielding is recently proposed for desirable performance compared to conventional systems. Butterfly-shaped beams with hexagonal cut-outs inside of the beam’s web is studied to better align the bending strength diagram along the link length with the corresponding demand shape of the applied moment diagram. In previous studies, it has been reported that these links have a substantial energy dissipation capability and sufficient ductility which necessities further investigations. In this study, a set of 240 nonlinear finite element models are developed for creation of a database and subsequently calibrated with finite element software packages. The capability of the gene expression programming (GEP) is explored for prediction of force-displacement relationship of a butterfly-shaped beam. Two new models are developed based on the reliable generated database. Subsequently, the proposed models are validated with several conducted analysis and statistical parameters, for which the comparisons are shown in details. The results represent that the proposed models are able to predict the force-displacement relationship of a butterfly-shaped beam with satisfactory accuracy.
- Force-displacement relationship of a butterfly-shaped beams based on gene expression programming [conference proceeding]Farzampour, Alireza; Mansouri, Iman; Mortazavi, Seyed Javad; Hu, Jong Wan (2019-11)Structural steel plates having engineered cut-outs to exhibit controlled yielding is recently proposed for desirable performance compared to conventional systems. Butterfly-shaped beams with hexagonal cut-outs inside of the beam’s web is studied to better align the bending strength diagram along the link length with the corresponding demand shape of the applied moment diagram. In previous studies, it has been reported that these links have substantial energy dissipation capability and sufficient ductility which necessities further investigations. In this study, a set of 240 nonlinear finite element models are developed for creation of a database and subsequently calibrated with finite element software packages. The capability of the gene expression programming (GEP) is explored for prediction of force-displacement relationship of a butterfly-shaped beam. Two new models are developed based on the reliable generated database. Subsequently, the proposed models are validated with several conducted analysis and statistical parameters, for which the comparisons are shown in detail. The results represent that the proposed models are able to predict the force-displacement relationship of a butterfly-shaped beam with satisfactory accuracy.
- Force-displacement relationship of the butterfly-shaped beams based on gene expression programmingFarzampour, Alireza; Mansouri, Iman; Mortazavi, Seyed Javad; Hu, Jong Wan (Springer, 2020-09)Structural steel plates with engineered cut-outs to exhibit controlled yielding mechanism is recently proposed for desirable structural performance compared to conventional systems. Butterfly-shaped beams with hexagonal cut-outs inside of the beam’s web is implemented to better align the bending strength diagram along the link length with the corresponding demand shape of the applied moment diagram. In previous studies, it has been reported that these links have a substantial energy dissipation capability and sufficient ductility which necessities further investigations and structural behavior prediction studies. In this study, a set of 240 nonlinear finite element models are developed for creation of a database and subsequently calibrated with finite element software packages. The capability of the gene expression programming (GEP) is explored for prediction of force-displacement relationship of a butterfly-shaped beam. Two new models are developed based on the reliable generated database. Subsequently, the proposed models are validated with several conducted analysis and statistical parameters, for which the comparisons are shown in details. The results represent that the proposed models are able to predict the force-displacement relationship of a butterfly-shaped beam with satisfactory accuracy.
- Harmful algal blooms and toxic air: The economic value of improved forecastsMoeltner, Klaus; Fanara, Tracy; Foroutan, Hosein; Hanlon, Regina; Lovko, Vince; Ross, Shane D.; Schmale, David G. III (2021-02)The adverse economic impacts of harmful algal blooms can be mitigated via tailored forecasting methods. Adequate provision of these services requires knowledge of the losses avoided, or, in other words, the economic benefits they generate. The latter can be difficult to measure for broader population segments, especially if forecasting services or features do not yet exist. We illustrate how Stated Preference tools and Choice Experiments are well-suited for this case. Using as example forecasts of respiratory irritation levels associated with airborne toxins caused by Florida red tide, we show that 24-hour predictions of spatially and temporally refined air quality conditions are valued highly by the underlying population. This reflects the numerous channels and magnitude of red tide impacts on locals' life and activities, which are also highlighted by our study. Our approach is broadly applicable to any type of air quality impediment with risk of human exposure.
- Investigation of the beams and columns connection with infill plate on the structural behavior of the steel plate shear wallsPaslar, Nima; Farzampour, Alireza (University of Tokyo, Japan, 2019-10-14)Steel plate shear walls are commonly used as structural lateral load resisting load systems in space-constrained areas. Many studies indicated that the implementation of the steel plate shear walls improves the ductility, stiffness and ultimate strength of the structure for which the interconnection of the steel infill plate with boundary members has a significant role. The typical connection of the infill shear plates to the boundary elements has a high-level fixity despite the general convenient construction procedures. In this study, the connection of the infill plates to the boundary elements are precisely investigated by establishing more than 21 computational models after verifying the modeling methodology. The structural performance of the partially connected plates with different commonly used connections types are evaluated and compared to the corresponding conventional fully connected infill plate systems. It is shown that column-only connected infill plate shear wall reduces the structural lateral load resisting capacity tangibly more than beam-only connected infill plates due to limited tension field action development. In addition, results indicated that systems with partial infill plate connection and connectivity ratio of 80% or more generally have similar structural performance compared to conventional systems with full connected infill plates.
- Investigations on The Structural Behavior of Steel Plate Shear Walls with Partially Interconnected Infill PlatesPaslar, Nima; Farzampour, Alireza; Chalangaran, Navid; Mansouri, Iman; Wan Hu, Jong (2023-07-08)Steel plate shear walls are considered an effective lateral load-resisting system widely used in space-constrained high-rise buildings. Steel plate shear walls could improve several structural parameters such as strength, energy absorption, and stiffness. Recently, there is a tendency to have limited connection between the infill plate and boundary elements to prevent significant direct demands on columns, and possible brittle modes of behavior leading to the economical design of various structural elements. However, previous studies showed that the absence of the interconnection between infill plate and columns in steel plate shear walls with beam-connected systems could reduce the performance of the system significantly. In the present study, procedures to improve the performance of the steel plate shear walls with limited infill plate interconnections with the boundary elements are provided. Subsequently, computational steel plate shear wall models, with and without boundary infill plate stiffeners and different widths of the infill plate have been investigated after fully validating the computational modeling methodology to find efficient procedures for eliminating the lack of interconnections. The results show that utilizing boundary stiffeners increased ultimate strength, energy dissipation and stiffness by 15%, 20%, and 24% on average. Although boundary stiffeners cannot fully control the out-of-plane displacements of the infill plate, they would be useful in improving the formation of tension field actions. Furthermore, it is shown that the width of the infill plate and boundary stiffeners are the key factors in the performance of the system.
- Inward and outward effectiveness of cloth masks, a surgical mask, and a face shieldPan, Jin; Harb, Charbel; Leng, Weinan; Marr, Linsey C. (Virginia Tech, 2020-11-20)We evaluated the effectiveness of 11 face coverings for material filtration efficiency, inward protection efficiency on a manikin, and outward protection efficiency on a manikin. At the most penetrating particle size, the vacuum bag, microfiber cloth, and surgical mask had material filtration efficiencies >50%, while the other materials had much lower filtration efficiencies. However, these efficiencies increased rapidly with particle size, and many materials had efficiencies >50% at 2 μm and >75% at 5 μm. The vacuum bag performed best, with efficiencies of 54-96% for all three metrics, depending on particle size. The thin acrylic and face shield performed worst. Inward protection efficiency and outward protection efficiency were similar for many masks; the two efficiencies diverged for stiffer materials and those worn more loosely (e.g., bandana) or more tightly (e.g., wrapped around the head) compared to a standard earloop mask. Discrepancies between material filtration efficiency and inward/outward protection efficiency indicated that the fit of the mask was important. We calculated that the particle size most likely to deposit in the respiratory tract when wearing a mask is ∼2 μm. Based on these findings, we recommend a three-layer mask consisting of outer layers of a flexible, tightly woven fabric and an inner layer consisting of a material designed to filter out particles. This combination should produce an overall efficiency of >70% at the most penetrating particle size and >90% for particles 1 μm and larger if the mask fits well.
- Mitigation of bidirectional solute flux in forward osmosis via membrane surface coating of zwitterion functionalized carbon nanotubesZou, Shiqiang; Smith, Ethan D.; Lin, Shihong; Martin, Stephen M.; He, Zhen (Elsevier, 2019-07-08)Forward osmosis (FO) has emerged as a promising membrane technology to yield high-quality reusable water from various water sources. A key challenge to be solved is the bidirectional solute flux (BSF), including reverse solute flux (RSF) and forward solute flux (FSF). Herein, zwitterion functionalized carbon nanotubes (Z-CNTs) have been coated onto a commercial thin film composite (TFC) membrane, resulting in BSF mitigation via both electrostatic repulsion forces induced by zwitterionic functional groups and steric interactions with CNTs. At a coating density of 0.97 gm⁻², a significantly reduced specific RSF was observed for multiple draw solutes, including NaCl (55.5% reduction), NH₄H₂PO₄(83.8%), (NH₄)₂HPO₄ (74.5%), NH₄Cl (70.8%), and NH₄HCO₃ (61.9%). When a synthetic wastewater was applied as the feed to investigate membrane rejection, FSF was notably reduced by using the coated membrane with fewer pollutants leaked to the draw solution, including NH₄⁺-N (46.3% reduction), NO₂⁻₋N (37.0%), NO₂⁻₋N (30.3%), K⁺ (56.1%), PO₄³⁻₋P (100%), and Mg²⁺ (100%). When fed with real wastewater, a consistent water flux was achieved during semi-continuous operation with enhanced fouling resistance. This study is among the earliest efforts to address BSF control via membrane modification, and the results will encourage further exploration of effective strategies to reduce BSF.
- Optimization of the curved metal damper to improve structural energy dissipation capacityKim, Young-Chan; Mortazavi, Seyed Javad; Farzampour, Alireza; Hu, Jong Wan; Mansouri, Iman; Awoyera, Paul Oluwaseun (MDPI, 2022-01-15)Structural curved metal dampers are implemented in various applications to mitigate the damages at a specific area efficiently. A stable and saturated hysteretic behavior for the in-plane direction is dependent on the shape of a curved-shaped damper. However, it has been experi-mentally shown that the hysteretic behavior in the conventional curved-shaped damper is un-stable, mainly as a result of bi-directional deformations. Therefore, it is necessary to conduct shape optimization for curved dampers to enhance their hysteretic behavior and energy dissipa-tion capability. In this study, the finite element (FE) model built in ABAQUS, is utilized to obtain optimal shape for the curved-shaped damper. The effectiveness of the model is checked by com-parisons of the FE model and experimental results. The parameters for the optimization include the curved length and shape of the damper, and the improved approach is conducted by investi-gating the curved sections. In addition, the design parameters are represented by B-spline curves (to ensure enhanced system performance), regression analysis is implemented to derive optimi-zation formulations considering energy dissipation, constitutive material model, and cumula-tive plastic strain. Results determine that the energy dissipation capacity of the curved steel damper could be improved by 32% using shape optimization techniques compared to the con-ventional dampers. Ultimately, the study proposes simple optimal shapes for further imple-mentations in practical designs.
- A Paradigm Shift to Align Transmission Routes with MechanismsMarr, Linsey C.; Tang, Julian W. (Oxford University Press, 2021-08-20)Current infection control guidelines subscribe to a contact/droplet/airborne paradigm that is based on outdated understanding. Here, we propose to modify and align existing guidelines with a more accurate description of the different transmission routes. This will improve the effectiveness of control measures as more transmissible variants of SARS-CoV-2 emerge.
- Parametric Computational Study on Butterfly-Shaped Hysteretic DampersFarzampour, Alireza; Eatherton, Matthew R. (2019)Structural steel plates oriented to resist shear loading can be used as hysteretic dampers in seismic force resisting systems. Some steel plate hysteretic dampers have engineered cut-outs leaving shear links that exhibit controlled yielding. A promising type of link described in the literature is the butterfly-shaped link that better aligns bending strength along the link length with the shape of the applied moment diagram. In previous studies, it has been observed that these links are capable of substantial ductility and energy dissipation. However, the effect of varying butterfly geometric parameters on the location of plastic hinges, accumulation of plastic strain, the potential for fracture, buckling, and energy dissipation are not well understood and thus deserve further investigation. A parametric computational study is conducted to investigate the shear yielding, flexural yielding, and lateral torsional buckling limit states for butterfly-shaped links. After validating the accuracy of the finite element (FE) modeling approach against previous experiments, 112 computational models with different geometrical properties were constructed and analyzed including consideration of initial imperfections. The resulting yielding moment, corresponding critical shear force, the accumulation of plastic strains through the length of links as well as the amount of energy dissipated are investigated. The results indicate that as the shape of the butterfly-shaped links become too straight or conversely too narrow in the middle, peak accumulated plastic strains increase. The significant effect of plate thickness on the buckling limit state is examined in this study. Results show that overstrength for these links (peak force divided by yield force) is between 1.2 - 4.5, with straight links producing larger overstrength. Additionally, proportioning the links to delay buckling, and designing the links to yield in the flexural mode are shown to improve energy dissipation.
- Prevention of Legionnaires' Disease in the 21st Century by Advancing Science and Public Health PracticeBerkelman, Ruth L.; Pruden, Amy (2017-11)