Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An automated probe for thermal conductivity measurements

    Thumbnail
    View/Open
    LD5655.V855_1987.D684.pdf (5.968Mb)
    Downloads: 3
    Date
    1987
    Author
    Dougherty, Brian P.
    Metadata
    Show full item record
    Abstract
    A transient technique was validated for making thermal conductivity measurements. The technique incorporated a small, effectively spherical, heat source and temperature sensing probe. The actual thermal conductivity measurements lasted 30 seconds. After approximately 15 minutes of data reduction, a value for thermal conductivity was obtained. The probe yielded local thermal conductivity measurements. Spherical sample volumes less than 8 cm² were required for the materials tested. Thermal conductivity (and moisture) distributions can be measured for relatively dry or wetted samples. The technique employs an encapsulated bead thermistor. A thermistor, more commonly used as a temperature transducer, has the inherent feature of being readily self-heated. A computer-based data acquisition and control system regulates the power supplied to the thermistor such that its self-heated temperature response approximates a step change. Thermal conductivity is deduced from the transient measurement of the power dissipated by the probe as a function of time. The technique was used to measure the thermal conductivity of fifteen liquids and five insulation materials. Two different thermistor types, glass-encapsulated and Teflon-encapsulated, were evaluated. Capabilities and limitations of each probe type and the measurement technique, in general, were observed.
    URI
    http://hdl.handle.net/10919/101183
    Collections
    • Masters Theses [19662]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us