Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An investigation of friction and wear mechanisms in selected thermoplastics

    Thumbnail
    View/Open
    LD5655.V855_1983.P688.pdf (15.56Mb)
    Downloads: 9
    Date
    1983
    Author
    Potter, Joseph R.
    Metadata
    Show full item record
    Abstract
    These studies developed from Scanning Electron Microscope (SEM) observations of abrasive wear of a polymer disk sliding against metal asperity models. The investigator was unable to observe actual particle formation but did identify elastic and plastic deformation of the polymer, and a debris buildup and extrusion process occurring at the leading edge of the asperity. On the assumption that this process could lead to a surface fatigue condition, pin-on-disk wear trials were completed using a spherical steel ball sliding on polycarbonate, rigid PVC, and ultra-high molecular weight polyethylene specimens in dry and lubricated conditions. A delay in debris formation was observed in the rigid PVC and polycarbonate dry sliding trials. In each case a higher rate of friction force increase coincided with debris formation. No debris was produced in the ultra-high molecular weight polyethylene dry sliding trials, and the friction force trace was flat. An SEM analysis of the polycarbonate and rigid PVC wear tracks revealed pitting consistent with the Delamination Theory of wear. The effect of the lubricants was to significantly alter the form of the friction force traces, but not to eliminate wear in rigid PVC and polycarbonate. The results of the investigation, particularly the delay in wear debris generation, indicated that a fatigue wear mechanism appeared to exist in dry metal pin-on-polymer disk sliding systems. A qualitative wear model was developed to relate the in-situ SEM observations and the results of the pin-on-disk trials.
    URI
    http://hdl.handle.net/10919/101225
    Collections
    • Masters Theses [19642]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us