Evaluation of Listeria monocytogenes and Staphylococcus aureus Survival and Growth during Cooling of Hams Cured with Natural-Source Nitrite

TR Number
Date
2021-02-01
Journal Title
Journal ISSN
Volume Title
Publisher
International Association of Food Protection
Abstract

Growing consumer demand for clean-label “natural” products has encouraged more meat processors to cure meat products with natural sources of nitrate or nitrite such as celery juice powder. One challenge for these producers is to identify safe cooling rates in products cured with celery juice powder where extended cooling could allow growth of pathogens. The Food Safety and Inspection Service of the U.S. Department of Agriculture recently added guidelines for stabilization of meat products cured using naturally occurring nitrites based on control of Clostridium spp. However, a knowledge gap exists for safe cooling rates that prevent the growth of Listeria monocytogenes and Staphylococcus aureus, potential postlethality contaminants, in naturally cured ham. The study was conducted to investigate the temperature profiles of naturally cured hams of typical sizes during refrigerator cooling and to determine the behavior of S. aureus and L. monocytogenes on ham during these cooling periods. Whole hams (14 lb [6,300 g]), half hams (6 lb [2,700 g]), and quarter hams (3 lb [1,400 g]) were slowly cooked in a smokehouse until internal temperatures reached a minimum of 1408F (608C) and then were immediately transferred into a walk-in cooler (388F [3.38C]). Cooling times for hams of all sizes were within the requirements for cured products but not for uncured products. Worst-case scenarios of postprocessing surface contamination were simulated by inoculating small naturally cured ham samples with S. aureus or L. monocytogenes. These inoculated hams were then cooled under controlled conditions of 130 to 458F (54.4 to 7.28C) for 720 to 900 min. By the end of cooling, small decreases (0.5 to 0.6 log CFU/g) were found for each inoculum. These findings may help small ham processors evaluating production and quality control methods to determine whether recommended concentrations of natural curing agents used to prevent growth of clostridial pathogens may also prevent growth of other pathogens during meat cooling.

Description
Keywords
Life Sciences & Biomedicine, Biotechnology & Applied Microbiology, Food Science & Technology, Celery juice powder, Foodborne pathogens, Formulated ham, Ready-to-eat, Refrigerated cooling, Simulated extended cooling, TO-EAT MEAT, CONTAMINATION, OUTGROWTH, CELERY, Strategic, Defence & Security Studies
Citation