Show simple item record

dc.contributor.authorBland, Michael T.en
dc.contributor.authorRaymond, Carol A.en
dc.contributor.authorSchenk, Paul M.en
dc.contributor.authorFu, Roger R.en
dc.contributor.authorKneissl, Thomasen
dc.contributor.authorPasckert, Jan Hendriken
dc.contributor.authorHiesinger, Harryen
dc.contributor.authorPreusker, Franken
dc.contributor.authorPark, Ryan S.en
dc.contributor.authorMarchi, Simoneen
dc.contributor.authorKing, Scott D.en
dc.contributor.authorCastillo-Rogez, Julie C.en
dc.contributor.authorRussell, Christopher T.en
dc.date.accessioned2021-04-14T16:03:35Zen
dc.date.available2021-04-14T16:03:35Zen
dc.date.issued2016-07-01en
dc.identifier7 (Article number)en
dc.identifier.issn1752-0894en
dc.identifier.urihttp://hdl.handle.net/10919/103024en
dc.description.abstractBefore NASA's Dawn mission, the dwarf planet Ceres was widely believed to contain a substantial ice-rich layer below its rocky surface. The existence of such a layer has significant implications for Ceres's formation, evolution, and astrobiological potential. Ceres is warmer than icy worlds in the outer Solar System and, if its shallow subsurface is ice-rich, large impact craters are expected to be erased by viscous flow on short geologic timescales. Here we use digital terrain models derived from Dawn Framing Camera images to show that most of Ceres's largest craters are several kilometres deep, and are therefore inconsistent with the existence of an ice-rich subsurface. We further show from numerical simulations that the absence of viscous relaxation over billion-year timescales implies a subsurface viscosity that is at least one thousand times greater than that of pure water ice. We conclude that Ceres's shallow subsurface is no more than 30% to 40% ice by volume, with a mixture of rock, salts and/or clathrates accounting for the other 60% to 70%. However, several anomalously shallow craters are consistent with limited viscous relaxation and may indicate spatial variations in subsurface ice content.en
dc.format.extentPages 538-+en
dc.format.extent6 page(s)en
dc.languageEnglishen
dc.publisherNature Publishing Groupen
dc.rightsPublic Domainen
dc.rights.urihttp://creativecommons.org/publicdomain/mark/1.0/en
dc.subjectPhysical Sciencesen
dc.subjectGeosciences, Multidisciplinaryen
dc.subjectGeologyen
dc.subjectWATER ICEen
dc.subjectTOPOGRAPHYen
dc.subjectEVOLUTIONen
dc.subjectDIFFERENTIATIONen
dc.subjectDEFORMATIONen
dc.subjectRELAXATIONen
dc.subjectSATELLITESen
dc.subjectMIXTURESen
dc.subjectRHEOLOGYen
dc.subjectGANYMEDEen
dc.subjectMeteorology & Atmospheric Sciencesen
dc.titleComposition and structure of the shallow subsurface of Ceres revealed by crater morphologyen
dc.typeArticle - Refereeden
dc.date.updated2021-04-14T16:03:25Zen
dc.description.versionPublished (Publication status)en
dc.title.serialNature Geoscienceen
dc.identifier.doihttps://doi.org/10.1038/NGEO2743en
dc.type.otherArticleen
dc.type.otherJournalen
dc.identifier.volume9en
dc.identifier.issue7en
dc.identifier.orcidKing, Scott [0000-0002-9564-5164 (orcid)]en
dc.description.adminPublic domain – authored by a U.S. government employeeen
dc.identifier.eissn1752-0908en
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/Geosciencesen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen
pubs.organisational-group/Virginia Techen


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Public Domain
License: Public Domain