Development of a High-Throughput Method to Study the Inhibitory Effect of Phytochemicals on Trimethylamine Formation

TR Number
Date
2021-04-26
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Abstract

Choline is metabolized by the gut microbiota into trimethylamine (TMA), the precursor of pro-atherosclerotic molecule trimethylamine N-oxide (TMAO). A reduction in TMA formation has shown cardioprotective effects, and some phytochemicals may reduce TMA formation. This study aimed to develop an optimized, high-throughput anaerobic fermentation methodology to study the inhibition of choline microbial metabolism into TMA by phenolic compounds with healthy human fecal starter. Optimal fermentation conditions were: 20% fecal slurry (1:10 in PBS), 100 µM choline, and 12 h fermentation. Additionally, 10 mM of 3,3-dimethyl-1-butanol (DMB) was defined as a positive TMA production inhibitor, achieving a ~50% reduction in TMA production. Gallic acid and chlorogenic acid reported higher TMA inhibitory potential (maximum of 80–90% TMA production inhibition), with IC50 around 5 mM. Neither DMB nor gallic acid or chlorogenic acid reduced TMA production through cytotoxic effects, indicating mechanisms such as altered TMA-lyase activity or expression.

Description
Keywords
atherosclerosis, gallic acid, chlorogenic acid, microbiota, trimethylamine
Citation
Iglesias-Carres, L.; Essenmacher, L.A.; Racine, K.C.; Neilson, A.P. Development of a High-Throughput Method to Study the Inhibitory Effect of Phytochemicals on Trimethylamine Formation. Nutrients 2021, 13, 1466.