The Role of Volatile Organic Compounds on Soil Microbial Communities and Ecosystem Processes

TR Number
Date
2020-04-17
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Soil microorganisms are primarily limited by carbon (C) availability. The majority of C entering belowground food webs comes directly from local flora. Plant derived labile C compounds affect microbial community structure and function, which in turn drive ecosystem function. Research has focused on dissolved organic C (DOC) from litter leachates and root exudates. These compounds are often readily assimilable by soil microorganisms and are precursors for stable soil organic matter formation. Due to diffusion limitation DOC rarely travels far beyond its origin, meaning most soil microorganisms are unable to access these compounds unless they are located near the C source. However, recent studies have illuminated the importance of volatile organic compounds (VOCs) in soil ecosystems. VOCs are produced in abundance and, as vapors, they are able to travel through soil more rapidly than DOC. This dissertation aims to investigate the importance of VOCs commonly produced during the decomposition of leaf litter. We used three separate microcosm experiments to answer the following questions. 1) How do abundant VOCs affect microbial activity in soil? 2) How do VOCs affect nitrogen (N) transformations and the microbes associated with N transformations? 3) How do VOCs affect microbial community composition? 4) Are VOCs from decomposing litter incorporated into soil C pools? In chapter 2, we show that methanol and acetone – common litter derived VOCs – increase microbial activity and labile soil C, while also decreasing available nitrate, and ammonia oxidizing archaea. Interestingly, this decrease in nitrifiers did not affect nitrification rate after VOC addition was ceased. In chapter 3, we demonstrate that soil microbial taxa respond differently to DOC and VOCs at different soil moisture levels. Specifically, DOC primarily affected taxa abundance in wetter soils, while the insoluble VOC α-pinene had the largest impact at lower moisture levels, and methanol affected abundance at all moisture levels. Finally, in chapter 4, we demonstrate that VOCs from decomposing leaf litter altered soil bacterial and fungal communities, and VOC derived C entered all measured soil organic matter pools without direct contact between decomposing litters and the soil. This work demonstrates the importance of VOCs on soil microbial communities and ecosystem function. The VOC induced increase in microbial activity, and the effects of VOCs at low moisture levels suggest that VOCs may function in the bulk soil in a manner similar to DOC in rhizosphere soil. Additionally, the incorporation of VOC-C into soil organic matter pools identifies a hitherto unrecognized mechanism for soil organic matter formation.

Description
Keywords
Volatile Organic Compounds, Microbial Communities, nitrification, carbon cycle, low molecular weight carbon compounds
Citation