Branched Peptides Targeting HIV-1 RRE RNA and Structure-Activity Relationship Studies of Spinster Homolog 2 Inhibitors

TR Number
Date
2020-06-08
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Binding of the Rev protein with Rev Response Element (RRE) RNA present in singly- and unspliced mRNA transcripts is necessary for the replication of HIV-1. This interaction transports the mRNA transcripts from the nucleus to the cytoplasm for translation of the necessary structural and enzymatic proteins for the newly budding virus as well as for providing its genetic material. Given the high rate of mutation in HIV-1, the highly conserved and pertinent RRE RNA is of high interest for pharmaceutical intervention. Consequently, a branched peptide library containing unnatural amino acids was developed to target RRE RNA with the goal of increasing stability, potency, selectivity, and in vivo activity for RRE RNA.

An unnatural amino acid branched peptide library (46,656 sequences) was synthesized and screened against RRE IIB and several hits in the sub-micromolar regime were found. A number of hits demonstrated selectivity in the presence of other RNAs in addition to two hits, 4A5 and 4B3, significantly inhibiting HIV-1 growth in vitro. These peptides inhibited HIV-1 replication in a concentration dependent manner and were demonstrated to be non-toxic. Further analysis of 4A5 and 4B3 via footprinting and SHAPE-MaP experiments determined that these peptides blocked binding of Rev through binding at the primary and secondary binding sites of RRE RNA.

Sphingosine 1-phosphate (S1P) is a signaling molecule that plays a role in various biological processes including immunity, neurogenesis, and angiogenesis. The role S1P plays is largely determined by its location, in which Spinster homolog 2 (spns2) and mfsd2b are the two known transporters. The two transporters exist in different cell types and cellular localizations, with spns2-produced S1P being responsible for trafficking of lymphocytes. As such, spns2 has become of interest for therapeutic targeting in autoimmune and inflammatory diseases. To validate spns2 as a target in pharmaceutical intervention, a series of spns2 inhibitors were developed.

A screening of a library of inhibitors found that compound SLP7120922 demonstrated inhibition of spns2 transport activity. The design, synthesis, and biological evaluation of inhibitors based on SLP7120922 is described. Modifications to the lipophilic tail region were performed with one compound 4.40f discovered to be potent, minimally toxic, and active in vivo. A series of modifications to the head region were then conducted that evaluated linear head derivatives with alkyl-, amide-, and amino acid-based groups. A number of compounds are reported that demonstrate good in vitro activity and minimal toxicity with two compounds, 4.48b and 4.52c, showing favorable in vivo activity in mice.

Description
Keywords
HIV-1 RRE RNA, Branched Peptides, Unnatural Amino Acids, Structure-Activity Relationship, Spinster Homolog 2, Sphingosine 1-Phosphate
Citation