Development of Implantable Optical Fibers for Immunotherapeutics Delivery and Tumor Impedance Measurement

Files
TR Number
Date
2021-11-30
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Immune checkpoint blockade antibodies have promising clinical applications but suffer from disadvantages such as severe toxicities and moderate patient-response rates. None of the current delivery strategies, including local administration aiming to avoid systemic toxicities, can sustainably supply drugs over the course of weeks; adjustment of drug dose, either to lower systemic toxicities or to augment therapeutic response, is not possible. Herein, an implantable miniaturized device has been developed using electrode-embedded optical fibers with both local delivery and measurement capabilities over the course of a few weeks. The combination of local immune checkpoint blockade antibodies delivery via this device with photodynamic therapy elicits a sustained anti-tumor immunity in multiple tumor models. Named Implantable Miniature Optical Fiber Device (IMOD), this device uses tumor impedance measurement for timely presentation of treatment outcomes, and allows modifications to the delivered drugs and their concentrations, rendering IMOD as outstandingly valuable for on-demand delivery of potent immunotherapeutics without exacerbating toxicities. Rigorous studies performed using IMOD are presented and discussed in the follow chapters, followed by exploration of proposed work to expand the breadth of functions offered by this implantable biomedical platform.

Description
Keywords
Cancer immunotherapy, theranostic device, optical fiber, tumor impedance
Citation