Spatial Patterns on Virginia's Second Highest Peak: Land Cover Dynamics and Tree Mortality in Two Rare Ecosystems

TR Number
Date
2020-06-12
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Whitetop Mountain is Virginia's second highest peak and hosts two globally rare, insular ecosystems: a southern Appalachian grass bald and a red spruce-dominated forest. These areas provide important ecosystem services and habitat for rare and endangered species. They are highly prized for their cultural value and recreational areas that support nearby rural economies. This thesis investigated spatial patterns in both ecosystems on Whitetop. We documented a 24.73% decrease of in the extent of the southern Appalachian grass bald across 68 years through analysis of historical aerial photography. In the red spruce-dominated forest, we used a consumer grade unmanned aerial vehicle (UAV) to survey the health of all trees within a 46 ha sample plot. We assessed (dead, dying, healthy) over 9,000 individual trees based on visual patterns in the imagery and produced spatial products that will inform land managers about where resources are most needed. About 7.4% of the red spruce trees in our study area were classified as dead or dying. A model relating spruce mortality to biophysical landscape factors identified no single predictive factor related to mortality. The addition of optical information from the UAV imagery into the model proved utility for remotely-sensed data in identification of dead spruce within the forest canopy at Whitetop and possibly in other similarly structured forests. This research contributed to the limited body of knowledge surrounding the decline of both southern Appalachian grass balds and red spruce forests and provided technical insights for future mortality monitoring.

Description
Keywords
land cover change, Whitetop Mountain, landscape pattern analysis, historical aerial photography
Citation
Collections