Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effects of Surface Condition on the Fatigue Behavior of CFRP-to-Steel Joints

    Thumbnail
    View/Open
    Carrera_Loza_BJ_T_2023.pdf (2.306Mb)
    Downloads: 6
    Date
    2023-01-23
    Author
    Carrera Loza, Bernardo Jose
    Metadata
    Show full item record
    Abstract
    The strengthening of steel bridges using CFRP laminates has become a commonly used technique because of its numerous advantages compared to conventional repairs which involve welding or bolting of new steel plates. These structures will experience some sort of irregular cyclic loading during their lifetime and to analyze these complex loading cases, small scale testing is used to evaluate the fatigue performance between the steel substrate, adhesive layer and the CFRP laminate. In this research, double-strap joints (DSJ) were fabricated consisting of two high-modulus CFRP laminates and ASTM A36 steel plates bonded using a two-part epoxy adhesive. Two types of steel surface conditions were considered to evaluate the fatigue behavior under constant force amplitudes. Roughness on the steel substrate was achieved by ½ in (13 mm) diameter pits approximately 1/8 in (3.18 mm) deep to simulate an irregular surface. The results show that the surface condition has marginal influence on the total life of the specimens. To assess the damage accumulation in the DSJ, phenomenological methods like the nonlinear strength wearout Model (NLSW) and stiffness degradation were used. It was found that residual strength and stiffness decreased in a non-linear fashion. A non-linear model was used that agrees well with the experimental results and can be used to predict the residual strength of the specimens under variable amplitude fatigue (VAF).
    General Audience Abstract
    With an aging and deteriorating infrastructure potentially being subjected to heavier loads than initially designed for, bridge engineers are increasingly looking for innovative, yet cost-effective solutions for repairing and maintaining the existing bridge inventory with sufficient capacity to carry legal loads. One alternative is to enhance the flexural strength of deteriorated steel members using carbon fiber-reinforced polymers (CFRP). This research project will investigate whether the use of CFRP retrofits is feasible for fatigue strengthening. The research will serve as insight to help guide bridge engineers or researchers on when and where the use of CFRP retrofits is suitable for the strengthening of steel bridges.
    URI
    http://hdl.handle.net/10919/113384
    Collections
    • Masters Theses [21530]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us