Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bayesian Visual Analytics: Interactive Visualization for High Dimensional Data

    Thumbnail
    View/Open
    Han_C_D_2012.pdf (2.985Mb)
    Downloads: 3955
    Supporting documents (171.4Kb)
    Downloads: 93
    Date
    2012-12-07
    Author
    Han, Chao
    Metadata
    Show full item record
    Abstract
    In light of advancements made in data collection techniques over the past two decades, data mining has become common practice to summarize large, high dimensional datasets, in hopes of discovering noteworthy data structures. However, one concern is that most data mining approaches rely upon strict criteria that may mask information in data that analysts may find useful. We propose a new approach called Bayesian Visual Analytics (BaVA) which merges Bayesian Statistics with Visual Analytics to address this concern. The BaVA framework enables experts to interact with the data and the feature discovery tools by modeling the "sense-making" process using Bayesian Sequential Updating. In this paper, we use BaVA idea to enhance high dimensional visualization techniques such as Probabilistic PCA (PPCA). However, for real-world datasets, important structures can be arbitrarily complex and a single data projection such as PPCA technique may fail to provide useful insights. One way for visualizing such a dataset is to characterize it by a mixture of local models. For example, Tipping and Bishop [Tipping and Bishop, 1999] developed an algorithm called Mixture Probabilistic PCA (MPPCA) that extends PCA to visualize data via a mixture of projectors. Based on MPPCA, we developped a new visualization algorithm called Covariance-Guided MPPCA which group similar covariance structured clusters together to provide more meaningful and cleaner visualizations. Another way to visualize a very complex dataset is using nonlinear projection methods such as  the Generative Topographic Mapping algorithm(GTM). We developped an interactive version of GTM to discover interesting local data structures. We demonstrate the performance of our approaches using both synthetic and real dataset and compare our algorithms with existing ones.
    URI
    http://hdl.handle.net/10919/19210
    Collections
    • Doctoral Dissertations [14977]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us