Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    WAMS-based Intelligent Load Shedding Scheme for Preventing Cascading Blackouts

    Thumbnail
    View/Open
    Veda_SS_D_2013.pdf (1.778Mb)
    Downloads: 5601
    Date
    2013-01-07
    Author
    Veda, Santosh Sambamoorthy
    Metadata
    Show full item record
    Abstract
    Severe disturbances in a large electrical interconnection cause a large mismatch in generation and load in the network, leading to frequency instability. If the mismatch is not rectified quickly, the system may disintegrate into multiple islands. Though the Automatic Generation Controls (AGC) perform well in correcting frequency deviation over a period of minutes, they are ineffective during a rolling blackout. While traditional Under Frequency Load Shedding Schemes (UFLS) perform quick control actions to arrest frequency decline in an islanded network, they are not designed to prevent unplanned islanding.

    The proposed Intelligent Load Shedding algorithm combines the effectiveness of AGC Scheme by observing tie line flows and the speed of operation of the UFLS Scheme by shedding loads intelligently, to preserve system integrity in the event of an evolving cascading failure. The proposed scheme detects and estimates the size of an event by monitoring the tie lines of a control area using Wide Area Measurement Systems (WAMS) and initiates load shedding by removing loads whose locations are optimally determined by a sensitivity analysis. The amount and location of the load shedding depends on the location and size of the initiating event, making the proposed algorithm adaptive and selective. Case Studies have been presented to show that control actions of the proposed scheme can directly mitigate a cascading blackout.
    URI
    http://hdl.handle.net/10919/19251
    Collections
    • Doctoral Dissertations [14973]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us