Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effect of Air Temperature, Vehicle Speed, and Pavement Surface Aging on Tire/Pavement Noise Measured with On-Board Sound Intensity Methodology

    Thumbnail
    View/Open
    Mogrovejo_Carrasco_DE_T_2013.pdf (10.75Mb)
    Downloads: 2234
    Date
    2013-02-01
    Author
    Mogrovejo Carrasco, Daniel Estuardo
    Metadata
    Show full item record
    Abstract
    The study of the traffic noise as an environmental impact, the search for solutions to this problem, and the development of noise measurement methodologies that help in the search of these solutions, is now a fundamental responsibility for the transportation industry.   So, in line with this responsibility, consistent work was made with focus on tire/pavement noise measured over different pavement surfaces, and under different environmental conditions, and different speeds. In a parallel way, work was conducted for the development, improvement, and practical use of the On- Board Sound Intensity (OBSI) methodology for tire/pavement noise measurements.   The first part of this thesis shows the results of field experimentation about the influence of external factors like air temperature and vehicle speed over the tire/pavement noise measured with the OBSI methodology. Temperatures from 40 to 90"F were targeted, and speeds from 35 mph to 60 mph (range in which tire/pavement noise becomes predominant for the overall vehicle noise) were tested. For this work a series of seasonal field tests were conducted on a primary road in Virginia over various months.  The results were analyzed to quantify the variation of tire/pavement noise with respect to the air temperature and test speed, and therefore to find correction factors for this variables in order to normalize the data taken under different conditions. In the second part of this thesis, the study of tire/pavement noise over different surfaces and measured over a timeframe of three seasons is presented. This part presents results about noise reduction potentials of two proposed "quiet" concrete technologies and 3 proposed "quiet" asphalt surfaces when compared with one another, and with control sections. Also the second part of the thesis includes results about the susceptibility of the proposed surfaces to external factors such as: aging (three seasons involved), air temperature differentials and winter maintenance. In general, the findings show trends that tire/pavement noise slightly decreases as air temperature increases. A gradient of approximately -0.05 dBA/"F was found. It was found as well that tire/pavement noise increases an average of 2.5 dBA for every 10 mph of increased speed.   The statistical analysis results for the second part of the thesis shows that all proposed concrete surfaces and asphalt surfaces present benefits in terms of noise reduction, For the asphalt surfaces, it was found that more voids in the surface helps to absorb the noise. In addition, the rubber modified mixes show an improved noise reduction potential. Air temperature normalization was performed an a statistical analysis was conducted; it was found that air temperature has a significant influence in the noise measurements especially for the first months of use. Finally it was found that there is a slightly increase in noise over time after the first months of use.
    URI
    http://hdl.handle.net/10919/19261
    Collections
    • Masters Theses [21069]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us