Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improved Methods for Gridding, Stochastic Modeling, and Compact Characterization of Terrain Surfaces

    Thumbnail
    View/Open
    Lambeth_JN_T_2013.pdf (3.830Mb)
    Downloads: 2573
    Date
    2013-04-22
    Author
    Lambeth, Jacob Nelson
    Metadata
    Show full item record
    Abstract
    Accurate terrain models provide the chassis designer with a powerful tool to make informed design decisions early in the design process. During this stage, engineers are challenged with predicting vehicle loads through modeling and simulation. The accuracy of these simulation results depends not only on the fidelity of the model, but also on the excitation to the model. It is clear that the terrain is the main excitation to the vehicle [1]. The inputs to these models are often based directly on physical measurements (terrain profiles); therefore, the terrain measurements must be as accurate as possible. A collection of novel methods can be developed to aid in the study and application of 3D terrain measurements, which are dense and non-uniform, including efficient gridding, stochastic modeling, and compact characterization. Terrain measurements are not collected with uniform spacing, which is necessary for efficient data storage and simulation. Many techniques are developed to help effectively grid dense terrain point clouds in a curved regular grid (CRG) format, including center and random vehicle paths, sorted gridding methods, and software implementation. In addition, it is beneficial to characterize the terrain as a realization of an underlying stochastic process and to develop a mathematical model of that process. A method is developed to represent a continuous-state Markov chain as a collection of univariate distributions, to be applied to terrain road profiles. The resulting form is extremely customizable and significantly more compact than a discrete-state Markov chain, yet it still provides a viable alternative for stochastically modeling terrain. Many new simulation techniques take advantage of 3D gridded roads along with traditional 2D terrain profiles. A technique is developed to model and synthesize 3D terrain surfaces by applying a variety of 2D stochastic models to the topological components of terrain, which are also decomposed into frequency bandwidths and down-sampled. The quality of the synthetic surface is determined using many statistical tests, and the entire work is implemented into a powerful software suite. Engineers from many disciplines who work with terrain surfaces need to describe the overall physical characteristics compactly and consistently. A method is developed to characterize terrain surfaces with a few coefficients by performing a principal component analysis, via singular value decomposition (SVD), to the parameter sets that define a collection of surface models.
    URI
    http://hdl.handle.net/10919/19329
    Collections
    • Masters Theses [21534]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us