Denserks: Fortran Sensitivity Solvers Using Continuous, Explicit Runge-kutta Schemes

Files
TR Number
TR-07-34
Date
2007-10-01
Journal Title
Journal ISSN
Volume Title
Publisher
Department of Computer Science, Virginia Polytechnic Institute & State University
Abstract

DENSERKS is a Fortran sensitivity equation solver package designed for integrating models whose evolution can be described by ordinary differential equations (ODEs). A salient feature of DENSERKS is its support for both forward and adjoint sensitivity analyses, with built-in integrators for both first and second order continuous adjoint models. The software implements explicit Runge-Kutta methods with adaptive timestepping and high-order dense output schemes for the forward and the tangent linear model trajectory interpolation. Implementations of six Runge-Kutta methods are provided, with orders of accuracy ranging from two to eight. This makes DENSERKS suitable for a wide range of practical applications. The use of dense output, a novel approach in adjoint sensitivity analysis solvers, allows for a high-order cost-effective interpolation. This is a necessary feature when solving adjoints of nonlinear systems using highly accurate Runge-Kutta methods (order five and above). To minimize memory requirements and make long-time integrations computationally efficient, DENSERKS implements a two-level checkpointing mechanism. The code is tested on a selection of problems illustrating first and second order sensitivity analysis with respect to initial model conditions. The resulting derivative information is also used in a gradient-based optimization algorithm to minimize cost functionals dependent on a given set of model parameters.

Description
Keywords
Mathematical software
Citation