Show simple item record

dc.contributor.authorYuzhen, Geen_US
dc.contributor.authorWatson, Layne T.en_US
dc.contributor.authorCollins, Emmanuel G.en_US
dc.contributor.authorBernstein, Dennis S.en_US
dc.date.accessioned2013-06-19T14:36:26Z
dc.date.available2013-06-19T14:36:26Z
dc.date.issued1994
dc.identifierhttp://eprints.cs.vt.edu/archive/00000383/en_US
dc.identifier.urihttp://hdl.handle.net/10919/19846
dc.description.abstractHomotopy algorithms for both full- and reduced-order LQG controller design problems with an H-to infinity constraint on disturbance attenuation are developed. The H-to infinity constraint is enforced by replacing the covariance Lyapunov equation by a Riccati equation whose solution gives an upper boundary on H-squared performance. The numerical algorithm, based on homotopy theory, solves the necessary conditions for a minimum of the upper bound on H-squared performance. The algorithms are based on two minimal parameter formulations: Ly, Bryson, and Cannon's 2X2 block parametrization and the input normal Riccati form parametrization. An over-parametrization formulation is also proposed. Numerical experiments suggest that the combination of a globally convergent homotopy method and a minimal parameter formulation applied to the upper bound minimization gives excellent results for mixed-norm H-squared/H-to infinity synthesis. The nonmonocity of homotopy zero curves is demonstrated, proving that algorithms more sophisticated that standard continuation are necessary.en_US
dc.format.mimetypeapplication/postscripten_US
dc.publisherDepartment of Computer Science, Virginia Polytechnic Institute & State Universityen_US
dc.relation.ispartofHistorical Collection(Till Dec 2001)en_US
dc.titleProbability-One Homotopy Algorithms for Full and Reduced Order H-squared/H-to Infinity Controller Synthesisen_US
dc.typeTechnical reporten_US
dc.identifier.trnumberTR-94-01en_US
dc.type.dcmitypeTexten_US
dc.identifier.sourceurlhttp://eprints.cs.vt.edu/archive/00000383/01/TR-94-01.ps


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record