Show simple item record

dc.contributor.authorSosonkina, Mashaen_US
dc.contributor.authorWatson, Layne T.en_US
dc.contributor.authorStewart, David E.en_US
dc.date.accessioned2013-06-19T14:35:45Z
dc.date.available2013-06-19T14:35:45Z
dc.date.issued1995-03-01
dc.identifierhttp://eprints.cs.vt.edu/archive/00000419/en_US
dc.identifier.urihttp://hdl.handle.net/10919/19919
dc.descriptionHomotopy algorithms to solve a nonlinear system of equations f(x)=0 involve tracking the zero curve of a homotopy map p(a,theta,x) from theta=0 until theta=1. When the algorithm nears or crosses the hyperplane theta=1, an "end game" phase is begun to compute the solution x(bar) satisfying p(a,theta,x(bar))=f(x(bar))=0. This note compares several end game strategies, including the one implemented in the normal flow code FIXPNF in the homotopy software package HOMPACK.en_US
dc.format.mimetypeapplication/postscripten_US
dc.publisherDepartment of Computer Science, Virginia Polytechnic Institute & State Universityen_US
dc.relation.ispartofHistorical Collection(Till Dec 2001)en_US
dc.titleNote on the End Game in Homotopy Zero Curve Trackingen_US
dc.typeTechnical reporten_US
dc.identifier.trnumberTR-95-04en_US
dc.type.dcmitypeTexten_US
dc.identifier.sourceurlhttp://eprints.cs.vt.edu/archive/00000419/01/TR-95-04.ps


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record