Show simple item record

dc.contributor.authorWang, Chang Y.en_US
dc.contributor.authorBernstein, Dennis S.en_US
dc.contributor.authorWatson, Layne T.en_US
dc.date.accessioned2013-06-19T14:35:45Z
dc.date.available2013-06-19T14:35:45Z
dc.date.issued1996-06-01
dc.identifierhttp://eprints.cs.vt.edu/archive/00000449/en_US
dc.identifier.urihttp://hdl.handle.net/10919/19920
dc.description.abstractThe optimal H-square model reduction problem is an inherently nonconvex problem and thus provides a nontrivial computational challenge. This paper systematically examines the requirements of probability-one homotopy methods to guarantee global convergence. Homotopy algorithms for nonlinear systems of equations construct a continuous family of systems, and solve the given system by tracking the continuous curve of solutions to the family. The main emphasis is on guaranteeing transversality for several homotopy maps based upon the pseudogramian formulation of the optimal projection equations and variations based upon canonical forms. These results are essential to the probability-one homotopy approach by guaranteeing good numerical properties in the computation- al implementation of the homotopy algorithms.en_US
dc.format.mimetypeapplication/postscripten_US
dc.publisherDepartment of Computer Science, Virginia Polytechnic Institute & State Universityen_US
dc.relation.ispartofHistorical Collection(Till Dec 2001)en_US
dc.titleConvergence Theory of Probability-one Homotopies for Model Order Reductionen_US
dc.typeTechnical reporten_US
dc.identifier.trnumberTR-96-10en_US
dc.type.dcmitypeTexten_US
dc.identifier.sourceurlhttp://eprints.cs.vt.edu/archive/00000449/01/TR-96-10.ps


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record