Show simple item record

dc.contributor.authorWells, David Reeseen
dc.date.accessioned2013-05-24T08:01:13Zen
dc.date.available2013-05-24T08:01:13Zen
dc.date.issued2013-05-23en
dc.identifier.othervt_gsexam:861en
dc.identifier.urihttp://hdl.handle.net/10919/23090en
dc.description.abstractThe quasi-geostrophic equations (QGE) are a model of large-scale ocean flows. We consider a pure stream function formulation and cite results for optimal error estimates for finding approximate solutions with the finite element method. We examine both the time dependent and steady-state versions of the equations. Numerical experiments verify the error estimates. We examine the Argyris finite element and derive the transformation matrix necessary to perform calculations on the reference triangle. We use the Argyris element because it is a high-order, conforming finite element for fourth order problems. In order to increase computational efficiency, we consider a two-level method to linearize the system of equations. This allows us to solve a small, nonlinear system and then use the result to linearize a larger system.en
dc.format.mediumETDen
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectQuasi-geostrophic equationsen
dc.subjectFinite element methoden
dc.subjectArgyris Elementen
dc.subjectTwo-Level Methoden
dc.titleA Two-Level Method For The Steady-State Quasigeostrophic Equationen
dc.typeThesisen
dc.contributor.departmentMathematicsen
dc.description.degreeMaster of Scienceen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelmastersen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.disciplineMathematicsen
dc.contributor.committeechairIliescu, Traianen
dc.contributor.committeememberLin, Taoen
dc.contributor.committeememberAdjerid, Slimaneen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record