dc.contributor.author Wells, David Reese en dc.date.accessioned 2013-05-24T08:01:13Z en dc.date.available 2013-05-24T08:01:13Z en dc.date.issued 2013-05-23 en dc.identifier.other vt_gsexam:861 en dc.identifier.uri http://hdl.handle.net/10919/23090 en dc.description.abstract The quasi-geostrophic equations (QGE) are a model of large-scale ocean flows. We consider a pure stream function formulation and cite results for optimal error estimates for finding approximate solutions with the finite element method. We examine both the time dependent and steady-state versions of the equations. Numerical experiments verify the error estimates. We examine the Argyris finite element and derive the transformation matrix necessary to perform calculations on the reference triangle. We use the Argyris element because it is a high-order, conforming finite element for fourth order problems. In order to increase computational efficiency, we consider a two-level method to linearize the system of equations. This allows us to solve a small, nonlinear system and then use the result to linearize a larger system. en dc.format.medium ETD en dc.publisher Virginia Tech en dc.rights In Copyright en dc.rights.uri http://rightsstatements.org/vocab/InC/1.0/ en dc.subject Quasi-geostrophic equations en dc.subject Finite element method en dc.subject Argyris Element en dc.subject Two-Level Method en dc.title A Two-Level Method For The Steady-State Quasigeostrophic Equation en dc.type Thesis en dc.contributor.department Mathematics en dc.description.degree Master of Science en thesis.degree.name Master of Science en thesis.degree.level masters en thesis.degree.grantor Virginia Polytechnic Institute and State University en thesis.degree.discipline Mathematics en dc.contributor.committeechair Iliescu, Traian en dc.contributor.committeemember Lin, Tao en dc.contributor.committeemember Adjerid, Slimane en
﻿