Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nonvolatile and Volatile Resistive Switching - Characterization, Modeling, Memristive Subcircuits

    Thumbnail
    View/Open
    Liu_T_D_2013.pdf (3.556Mb)
    Downloads: 8774
    Supporting documents (262.1Kb)
    Downloads: 899
    Date
    2013-06-04
    Author
    Liu, Tong
    Metadata
    Show full item record
    Abstract
    Emerging memory technologies are being intensively investigated for extending Moore\'s law in the next decade. The conductive bridge random access memory (CBRAM) is one of the most promising candidates. CBRAM shows unique nanoionics-based filamentary switching mechanism. Compared to flash memory, the advantages of CBRAM include excellent scalability, low power consumption, high OFF-/ON-state resistance ratio, good endurance, and long retention. Besides the nonvolatile memory applications, resistive switching devices implement the function of memristor which is the fourth basic electrical component. This research presents the characterization and modeling of Cu/TaOx/Pt resistive switching devices. Both Cu and oxygen vacancy nanofilaments can conduct current according to the polarity of bias voltage. The volatile resistive switching phenomenon has been observed on Cu/TaOx/delta-Cu/Pt devices and explained by a flux balancing model. The resistive devices are also connected in series and in anti-parallel manner. These circuit elements are tested for chaotic neural circuit. The quantum conduction has been observed in the I-V characteristics of devices, evidencing the metallic contact between the nanofilament and electrodes. The model of filament radial growth has been developed to explain the transient I-V relation and multilevel switching in the metallic contact regime. The electroforming/SET and RESET processes have been simulated according to the mechanism of conductive filament formation and rupture and validated by experimental results. The Joule and Thomson heating effects have also been investigated for the RESET processes.
    URI
    http://hdl.handle.net/10919/23141
    Collections
    • Doctoral Dissertations [13614]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us