Show simple item record

dc.contributor.authorTsuruta, James Ken_US
dc.contributor.authorDayton, Paul Aen_US
dc.contributor.authorGallippi, Caterina Men_US
dc.contributor.authorO'Rand, Michael Gen_US
dc.contributor.authorStreicker, Michael Aen_US
dc.contributor.authorGessner, Ryan Cen_US
dc.contributor.authorGregory, Thomas Sen_US
dc.contributor.authorSilva, Erick JRen_US
dc.contributor.authorHamil, Katherine Gen_US
dc.contributor.authorMoser, Glenda Jen_US
dc.contributor.authorSokal, David Cen_US
dc.date.accessioned2013-06-08T09:25:05Z
dc.date.available2013-06-08T09:25:05Z
dc.date.issued2012-01-30
dc.identifier.citationReproductive Biology and Endocrinology. 2012 Jan 30;10(1):7en_US
dc.identifier.urihttp://hdl.handle.net/10919/23184
dc.description.abstractBackground Studies published in the 1970s by Mostafa S. Fahim and colleagues showed that a short treatment with ultrasound caused the depletion of germ cells and infertility. The goal of the current study was to determine if a commercially available therapeutic ultrasound generator and transducer could be used as the basis for a male contraceptive. Methods Sprague-Dawley rats were anesthetized and their testes were treated with 1 MHz or 3 MHz ultrasound while varying power, duration and temperature of treatment. Results We found that 3 MHz ultrasound delivered with 2.2 Watt per square cm power for fifteen minutes was necessary to deplete spermatocytes and spermatids from the testis and that this treatment significantly reduced epididymal sperm reserves. 3 MHz ultrasound treatment reduced total epididymal sperm count 10-fold lower than the wet-heat control and decreased motile sperm counts 1,000-fold lower than wet-heat alone. The current treatment regimen provided nominally more energy to the treatment chamber than Fahim's originally reported conditions of 1 MHz ultrasound delivered at 1 Watt per square cm for ten minutes. However, the true spatial average intensity, effective radiating area and power output of the transducers used by Fahim were not reported, making a direct comparison impossible. We found that germ cell depletion was most uniform and effective when we rotated the therapeutic transducer to mitigate non-uniformity of the beam field. The lowest sperm count was achieved when the coupling medium (3% saline) was held at 37 degrees C and two consecutive 15-minute treatments of 3 MHz ultrasound at 2.2 Watt per square cm were separated by 2 days. Conclusions The non-invasive nature of ultrasound and its efficacy in reducing sperm count make therapeutic ultrasound a promising candidate for a male contraceptive. However, further studies must be conducted to confirm its efficacy in providing a contraceptive effect, to test the result of repeated use, to verify that the contraceptive effect is reversible and to demonstrate that there are no detrimental, long-term effects from using ultrasound as a method of male contraception.en_US
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.rightsCreative Commons Attribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleTherapeutic ultrasound as a potential male contraceptive: power, frequency and temperature required to deplete rat testes of meiotic cells and epididymides of sperm determined using a commercially available systemen_US
dc.typeArticle - Refereed
dc.date.updated2013-06-08T09:25:06Z
dc.description.versionPeer Reviewed
dc.rights.holderJames K Tsuruta et al.; licensee BioMed Central Ltd.en_US
dc.title.serialReproductive Biology and Endocrinology
dc.identifier.doihttps://doi.org/10.1186/1477-7827-10-7
dc.type.dcmitypeText


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International
License: Creative Commons Attribution 4.0 International