Show simple item record

dc.contributorVirginia Techen_US
dc.contributor.authorLekien, F.en_US
dc.contributor.authorRoss, Shane D.en_US
dc.date.accessioned2013-12-04T14:59:22Z
dc.date.available2013-12-04T14:59:22Z
dc.date.issued2010-03-01
dc.identifier.citationLekien, Francois and Ross, Shane D., “The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds,” Chaos 20, 017505 (2010), DOI:http://dx.doi.org/10.1063/1.3278516en_US
dc.identifier.issn1054-1500
dc.identifier.urihttp://hdl.handle.net/10919/24401
dc.description.abstractWe generalize the concepts of finite-time Lyapunov exponent (FTLE) and Lagrangian coherent structures to arbitrary Riemannian manifolds. The methods are illustrated for convection cells on cylinders and Moumlbius strips, as well as for the splitting of the Antarctic polar vortex in the spherical stratosphere and a related point vortex model. We modify the FTLE computational method and accommodate unstructured meshes of triangles and tetrahedra to fit manifolds of arbitrary shape, as well as to facilitate dynamic refinement of the FTLE mesh.en_US
dc.format.mimetypeapplication/pdfen_US
dc.language.isoen_US
dc.publisherAmerican Institute of Physics
dc.subjectLagrangian coherent structuresen_US
dc.subjectRayleigh-bénard convectionen_US
dc.subjectN-vortex prblemen_US
dc.subjectInvariant manifoldsen_US
dc.subjectPolar vortexen_US
dc.subject2-dimensional mapsen_US
dc.subjectChaotic advectionen_US
dc.subjectAperiodic flowsen_US
dc.subjectRotating sphereen_US
dc.subjectPoint vorticesen_US
dc.titleThe computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifoldsen_US
dc.typeArticle - Refereeden_US
dc.identifier.urlhttp://scitation.aip.org/content/aip/journal/chaos/20/1/10.1063/1.3278516
dc.date.accessed2013-11-20
dc.title.serialChaos
dc.identifier.doihttps://doi.org/10.1063/1.3278516
dc.type.dcmitypeTexten_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record