Show simple item record

dc.contributorVirginia Tech
dc.contributor.authorDe Leo, Lorenzo
dc.contributor.authorBernier, Jean-Sebastien
dc.contributor.authorKollath, Corinna
dc.contributor.authorGeorges, Antoine
dc.contributor.authorScarola, Vito W.
dc.date.accessioned2014-01-03T16:01:24Z
dc.date.available2014-01-03T16:01:24Z
dc.date.issued2011-02-10
dc.identifier.citationDe Leo, Lorenzo ; Bernier, Jean-Sebastien ; Kollath, Corinna ; et al., Feb 10, 2011. “Thermodynamics of the three-dimensional Hubbard model: Implications for cooling cold atomic gases in optical lattices,” PHYSICAL REVIEW A 83(2): 023606. DOI: 10.1103/PhysRevA.83.023606en_US
dc.identifier.issn1050-2947
dc.identifier.urihttp://hdl.handle.net/10919/24780
dc.description.abstractWe present a comprehensive study of the thermodynamic properties of the three-dimensional fermionic Hubbard model, with application to cold fermionic atoms subject to an optical lattice and a trapping potential. Our study is focused on the temperature range of current experimental interest. We employ two theoretical methods-dynamical mean-field theory and high-temperature series-and perform comparative benchmarks to delimit their respective range of validity. Special attention is devoted to understand the implications that thermodynamic properties of this system have on cooling. Considering the distribution function of local occupancies in the inhomogeneous lattice, we show that, under adiabatic evolution, the variation of any observable (e. g., temperature) can be conveniently disentangled into two distinct contributions. The first contribution is due to the redistribution of atoms in the trap during the evolution, while the second one comes from the intrinsic change of the observable. Finally, we provide a simplified picture of a recently proposed cooling procedure, based on spatial entropy separation, by applying this method to an idealized model.en_US
dc.description.sponsorshipAgence Nationale de la Recherche
dc.description.sponsorshipDARPA-OLE
dc.description.sponsorship"Triangle de la Physique"
dc.description.sponsorshipFonds Quebecois de Recherche sur la Nature et les Technologies
dc.language.isoen_US
dc.publisherAmerican Physical Society
dc.subjectcondensate
dc.subjectstrong correlation limit
dc.subjectmean-field theory
dc.subjectinfinite dimensions
dc.subjectmott insulator
dc.subjectfermions
dc.titleThermodynamics of the three-dimensional Hubbard model: Implications for cooling cold atomic gases in optical lattices
dc.typeArticle
dc.identifier.urlhttp://link.aps.org/doi/10.1103/PhysRevA.83.023606
dc.date.accessed2013-12-18
dc.title.serialPhysical Review A
dc.identifier.doihttps://doi.org/10.1103/PhysRevA.83.023606


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record