Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design and Implementation of the VirtuOS Operating System

    Thumbnail
    View/Open
    Nikolaev_R_D_2013.pdf (1.101Mb)
    Downloads: 4637
    Date
    2014-01-21
    Author
    Nikolaev, Ruslan
    Metadata
    Show full item record
    Abstract
    Most operating systems provide protection and isolation to user processes, but not to critical system components such as device drivers or other systems code. Consequently, failures in these components often lead to system failures. VirtuOS is an operating system that exploits a new method of decomposition to protect against such failures. VirtuOS exploits virtualization to isolate and protect vertical slices of existing OS kernels in separate service domains. Each service domain represents a partition of an existing kernel, which implements a subset of that kernel's functionality. Service domains directly service system calls from user processes. VirtuOS exploits an exceptionless model, avoiding the cost of a system call trap in many cases. We illustrate how to apply exceptionless system calls across virtualized domains. To demonstrate the viability of VirtuOS's approach, we implemented a prototype based on the Linux kernel and Xen hypervisor. We created and evaluated a network and a storage service domain. Our prototype retains compatibility with existing applications, can survive the failure of individual service domains while outperforming alternative approaches such as isolated driver domains and even exceeding the performance of native Linux for some multithreaded workloads. The evaluation of VirtuOS revealed costs due to decomposition, memory management, and communication, which necessitated a fine-grained analysis to understand their impact on the system's performance. The interaction of virtual machines with multiple underlying software and hardware layers in virtualized environment makes this task difficult. Moreover, performance analysis tools commonly used in native environments were not available in virtualized environments. Our work addresses this problem to enable an in-depth performance analysis of VirtuOS. Our Perfctr-Xen framework provides capabilities for per-thread analysis with both accumulative event counts and interrupt-driven event sampling. Perfctr-Xen is a flexible and generic tool, supports different modes of virtualization, and can be used for many applications outside of VirtuOS.
    URI
    http://hdl.handle.net/10919/24964
    Collections
    • Doctoral Dissertations [16816]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us