Show simple item record

dc.contributorVirginia Tech
dc.contributor.authorLowell, Robert P.
dc.contributor.authorFarough, Aida
dc.contributor.authorHoover, Joshua
dc.contributor.authorCummings, Kylin
dc.date.accessioned2014-02-05T14:20:21Z
dc.date.available2014-02-05T14:20:21Z
dc.date.issued2013-06
dc.identifier.citationLowell, R. P., A. Farough, J. Hoover, and K. Cummings (2013), Characteristics of magma-driven hydrothermal systems at oceanic spreading centers, Geochem. Geophys. Geosyst., 14, 1756-1770, doi:10.1002/ggge.20109.
dc.identifier.issn1525-2027
dc.identifier.urihttp://hdl.handle.net/10919/25300
dc.description.abstractWe use one- and two-limb single-pass models to de termine vent field characteristics such as mass flow rate Q, bulk permeability in the discharge zone k(d), thickness of the conductive boundary layer at the base of the system , magma replenishment rate, and residence time in the discharge zone. Data on vent temperature, vent field area, heat output, and the surface area and depth of the subaxial magma chamber (AMC) constrain the models. The results give Q similar to 100kg/s, k(d)similar to 10(-13)m(2), and similar to 10m, essentially independent of spreading rate, and detailed characteristics of the AMC. In addition, we find no correlation between heat output at individual vent fields and spreading rate or depth to the AMC. We conclude that high-temperature hydrothermal systems are driven by local magma supply rates in excess of that needed for steady state crustal production and that crustal permeability enables hydrothermal circulation to tap magmatic heat regardless of AMC depth. Using data on partitioning of heat flow between focused and diffuse flow, we find that 80-90% of the hydrothermal heat output is derived from high-temperature fluid, even though much of the heat output discharges as low-temperature fluid. In some cases, diffuse flow fluids may exhibit considerable conductive cooling or heating. By assuming conservative mixing of diffuse flow fluids at East Pacific Rise 9 degrees 50N, we find that most transport of metals such as Fe and Mn occurs in diffuse flow and that CO2, H-2, and CH4 are taken up by microbial activity.
dc.description.sponsorshipNSF OCE-0819084, OCE-0926418
dc.language.isoen_US
dc.publisherAmerican Geophysical Union
dc.subjecthydrothermal systems
dc.subjectoceanic spreading centers
dc.subjectmodeling
dc.subjecteast-pacific-rise
dc.subjectde-fuca-ridge
dc.subjectmid-atlantic ridge
dc.subjectmassive sulfide deposits
dc.subjectheat-flux
dc.subjectvent-field
dc.subjectendeavor segment
dc.subjectmidocean ridges
dc.subjectdiffuse flow
dc.subjecthot springs
dc.titleCharacteristics of magma-driven hydrothermal systems at oceanic spreading centers
dc.typeArticle - Refereed
dc.identifier.urlhttp://onlinelibrary.wiley.com/doi/10.1002/ggge.20109/pdf
dc.date.accessed2014-01-31
dc.title.serialGeochemistry Geophysics Geosystems
dc.identifier.doihttps://doi.org/10.1002/ggge.20109


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record