Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Science (COS)
    • Department of Biological Sciences
    • Scholarly Works, Department of Biological Sciences
    • View Item
    •   VTechWorks Home
    • College of Science (COS)
    • Department of Biological Sciences
    • Scholarly Works, Department of Biological Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Constraints on the adhesion of viscous threads spun by orb-weaving spiders: the tensile strength of glycoprotein glue exceeds its adhesion

    Thumbnail
    View/Open
    Main article (661.2Kb)
    Downloads: 301
    Date
    2011-07
    Author
    Opell, B. D.
    Schwend, H. S.
    Vito, S. T.
    Metadata
    Show full item record
    Abstract
    In this study we tested the hypothesis that a viscous thread releases its hold on a surface because its glycoprotein glue pulls from the surface and not because its elongating droplets break near their attachment to the surface. We compared the values obtained when three species' viscous threads adhered to four smooth surfaces, which differed in their total surface energy and in the proportions of their dispersion and polar energy components. Although water comprised 43-70% of the volume of these viscous droplets, only the dispersion surface energies of test materials and not their polar surface energies impacted thread adhesion. These results support the droplet pull-off hypothesis and are consistent with a previous finding that capillary force contributes little to thread adhesion. Just as a viscous thread's stickiness is constrained by the tensile strength of its supporting axial fibers, our findings suggest that glycoprotein adhesion is constrained by glycoprotein tensile strength.
    URI
    http://hdl.handle.net/10919/25343
    Collections
    • Scholarly Works, Department of Biological Sciences [700]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us