Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Monte Carlo simulation of ion transport of high strain ionomeric polymer transducers

    Thumbnail
    View/Open
    Dissertation_Xingxi.pdf (3.328Mb)
    Downloads: 527
    Date
    2008-01-15
    Author
    He, Xingxi
    Metadata
    Show full item record
    Abstract
    Ionomeric polymer transducers exhibit electromechanical coupling capabilities. The transport of charge due to electric stimulus is the primary mechanism of actuation for a class of polymeric active materials known as ionomeric polymer transducers (IPTs). The research presented in this dissertation focuses on modeling the cation transport and cation steady state distribution due to the actuation of an IPT. Ion transport in the IPT depends on the morphology of the hydrated Nafion mem- brane and the morphology of the metal electrodes. Recent experimental findings show that adding conducting powders at the polymer-conductor interface increases the displacement output. However, it is difficult for a traditional continuum model based on transport theory to include morphology in the model. In this dissertation, a two-dimensional Monte Carlo simulation of ion hopping has been developed to describe ion transport in materials that have fixed and mobile charge similar to the structure of the ionic polymer transducer. In the simulation, cations can hop around in a square lattice. A step voltage is applied be- tween the electrodes of the IPT, causing the thermally-activated hopping between multiwell energy structures. By sampling the ion transition time interval as a random variable, the system evolution is obtained. Conducting powder spheres have been incorporated into the Monte Carlo simulation. Simulation results demonstrate that conducting powders increase the ion conductivity. Successful implementation of parallel computation makes it possible for the simulation to include more powder spheres to find out the saturation percentage of conducting powders for the ion conductivity. To compare simulation results with experimental data, a multiscale model has been developed to increase the scale of Monte Carlo simulation. Both transient responses and steady state responses show good agreement with experimental measurements.
    URI
    http://hdl.handle.net/10919/26068
    Collections
    • Doctoral Dissertations [13611]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us