Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Understanding Time-Variant Stress-Strain in Turkey: A Numerical Modeling Approach

    Thumbnail
    View/Open
    SNowakDissertation1.pdf (6.432Mb)
    Downloads: 311
    Date
    2004-11-23
    Author
    Nowak, Stephanie Beth
    Metadata
    Show full item record
    Abstract
    Over the past century, a series of large (> 6.5) magnitude earthquakes have struck along the North Anatolian Fault Zone (NAFZ) in Turkey in a roughly East to West progression. The progression of this earthquake sequence began in 1939 with the Ms 8.0 earthquake near the town of Erzincan and continued westward, with two of the most recent ruptures occurring near the Sea of Marmara in 1999. The sequential nature of ruptures along this fault zone implies that there is a connection between the location of the previous rupture and that of the future rupture zones. This study focuses on understanding how previous rupture events and tectonic influences affect the stress regime of the NAFZ and how these stress changes affect the probability of future rupture along any unbroken segments of the fault zone using a two dimensional finite element modeling program. In this study, stress changes due to an earthquake are estimated using the slip history of the event, estimations of rock and fault properties along the fault zone (elastic parameters), and the far-field tectonic influence due to plate motions. Stress changes are not measured directly. The stress regime is then used to calculate the probability of rupture along another segment of the fault zone. This study found that when improper estimates of rock properties are utilized, the stress changes may be under- or over- estimated by as much as 350% or more. Because these calculated stress changes are used in probability calculations, the estimates of probability can be off by as much as 20%. A two dimensional model was built to reflect the interpreted geophysical and geological variations in elastic parameters and the 1939 through 1999 rupture sequence was modeled. The far-field tectonic influence due to plate motions contributed between 1 and 4 bars of stress to the unbroken segments of the fault zone while earthquake events transferred up to 50 bars of stress to the adjacent portions of the fault zone. The 1999 rupture events near Izmit and Düzce have increased the probability of rupture during the next ten years along faults in the Marmara Sea to 38% while decreasing the probability of rupture along the faults near the city of Bursa by ~6%. Large amounts of strain accumulation are interpreted along faults in the Marmara Sea, further compounding the case for a large rupture event occurring in that area in the future.
    URI
    http://hdl.handle.net/10919/26072
    Collections
    • Doctoral Dissertations [14209]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us