Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analytical and Computational Tools for the Study of Grazing Bifurcations of Periodic Orbits and Invariant Tori

    Thumbnail
    View/Open
    Dissertation_Thota.pdf (7.137Mb)
    Downloads: 195
    Date
    2007-02-02
    Author
    Thota, Phanikrishna
    Metadata
    Show full item record
    Abstract
    The objective of this dissertation is to develop theoretical and computational tools for the study of qualitative changes in the dynamics of systems with discontinuities, also known as nonsmooth or hybrid dynamical systems, under parameter variations. Accordingly, this dissertation is divided into two parts. The analytical section of this dissertation discusses mathematical tools for the analysis of hybrid dynamical systems and their application to a series of model examples. Specifically, qualitative changes in the system dynamics from a nonimpacting to an impacting motion, referred to as grazing bifurcations, are studied in oscillators where the discontinuities are caused by impacts. Here, the study emphasizes the formulation of conditions for the persistence of a steady state motion in the immediate vicinity of periodic and quasiperiodic grazing trajectories in an impacting mechanical system. A local analysis based on the discontinuity-mapping approach is employed to derive a normal-form description of the dynamics near a grazing trajectory. Also, the results obtained using the discontinuity-mapping approach and direct numerical integration are found to be in good agreement. It is found that the instabilities caused by the presence of the square-root singularity in the normal-form description affect the grazing bifurcation scenario differently depending on the relative dimensionality of the state space and the steady state motion at the grazing contact. The computational section presents the structure and applications of a software program, TC-HAT, developed to study the bifurcation analysis of hybrid dynamical systems. Here, we present a general boundary value problem (BVP) approach to locate periodic trajectories corresponding to a hybrid dynamical system under parameter variations. A methodology to compute the eigenvalues of periodic trajectories when using the BVP formulation is illustrated using a model example. Finally, bifurcation analysis of four model hybrid dynamical systems is performed using TC-HAT.
    URI
    http://hdl.handle.net/10919/26196
    Collections
    • Doctoral Dissertations [13561]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us