Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Monitoring Markov Dependent Binary Observations with a Log-Likelihood Ratio Based CUSUM Control Chart

    Thumbnail
    View/Open
    STAT_Dissertation.pdf (692.0Kb)
    Downloads: 172
    Date
    2006-01-17
    Author
    Modarres-Mousavi, Shabnam
    Metadata
    Show full item record
    Abstract
    Our objective is to monitor the changes in a proportion with correlated binary observations. All of the published work on this subject used the first-order Markov chain model for the data. Increasing the order of dependence above one by extending a standard Markov chain model entails an exponential increase of both the number of parameters and the dimension of the transition probability matrix. In this dissertation, we develop a particular Markov chain structure, the Multilevel Model (MLM), to model the correlation between binary data. The basic idea is to assign a lower probability to observing a 1 when all previous correlated observations are 0's, and a higher probability to observing a 1 as the last observed 1 gets closer to the current observation. We refer to each of the distinct situations of observing a 1 as a "level". For a given order of dependence, , at most different values of conditional probabilities of observing a 1 can be assigned. So the number of levels is always less than or equal to . Compared to a direct extension of the first-order Markov model to higher orders, our model is considerably parsimonious. The number of parameters for the MLM is only one plus the number of levels, and the transition probability matrix is . We construct a CUSUM control chart for monitoring a proportion with correlated binary observations. First, we use the probability structure of a first-order Markov chain to derive a log-likelihood ratio based CUSUM control statistic. Then, we model this CUSUM statistic itself as a Markov chain, which in turn allows for designing a control chart with specified statistical properties: the Markov Binary CUSUM (MBCUSUM) chart. We generalize the MBCUSUM to account for any order of dependence between binary observations through implying MLM to the data and to our CUSUM control statistic. We verify that the MBCUSUM has a better performance than a curtailed Shewhart chart. Also, we show that except for extremely large changes in the proportion (of interest) the MBCUSUM control chart detects the changes faster than the Bernoulli CUSUM control chart, which is designed for independent observations.
    URI
    http://hdl.handle.net/10919/26235
    Collections
    • Doctoral Dissertations [16021]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us