Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Infinite Groebner Bases And Noncommutative Polly Cracker Cryptosystems

    Thumbnail
    View/Open
    rai_etd.pdf (490.1Kb)
    Downloads: 574
    Date
    2004-03-23
    Author
    Rai, Tapan S.
    Metadata
    Show full item record
    Abstract
    We develop a public key cryptosystem whose security is based on the intractability of the ideal membership problem for a noncommutative algebra over a finite field. We show that this system, which is the noncommutative analogue of the Polly Cracker cryptosystem, is more secure than the commutative version. This is due to the fact that there are a number of ideals of noncommutative algebras (over finite fields) that have infinite reduced Groebner bases, and can be used to generate a public key. We present classes of such ideals and prove that they do not have a finite Groebner basis under any admissible order. We also examine various techniques to realize finite Groebner bases, in order to determine whether these ideals can be used effectively in the design of a public key cryptosystem. We then show how some of these classes of ideals, which have infinite reduced Groebner bases, can be used to design a public key cryptosystem. We also study various techniques of encryption. Finally, we study techniques of cryptanalysis that may be used to attack the cryptosystems that we present. We show how poorly constructed public keys can in fact, reveal the private key, and discuss techniques to design public keys that adequately conceal the private key. We also show how linear algebra can be used in ciphertext attacks and present a technique to overcome such attacks. This is different from the commutative version of the Polly Cracker cryptosystem, which is believed to be susceptible to "intelligent" linear algebra attacks.
    URI
    http://hdl.handle.net/10919/26504
    Collections
    • Doctoral Dissertations [16334]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us