The Reactivity of Chemical Warfare Agent Simulants on Carbamate Functionalized Monolayers and Ordered Silsesquioxane Films

TR Number
Date
2005-04-06
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

The reactivity of chemical warfare agents (CWAs) and CWA simulants on organic and oxide surfaces is not currently well understood, but is of substantial importance to the development of effective sensors, filters and sorbent materials. Polyurethane coatings are used by the armed forces as chemical agent resistive paints to limit the uptake of CWAs on surfaces, while the use of metal oxides has been explored for decontamination and protection purposes. To better understand the chemical nature of the interactions of organophosphonate simulants with these surfaces, an ultra-high vacuum environment was used to isolate the target interactions from environmental gaseous interferences. The use of highly-characterized surfaces, coupled with molecular beam and dosing capabilities, allows for the elucidation of adsorption, desorption, and reaction mechanisms of CWA simulants on a variety of materials.

Model urethane-containing organic coatings were designed and applied toward the creation of well-ordered thin films containing carbamate linkages. In addition, novel trisilanolphenyl-polyhedral oligomeric silsesquioxane (POSS) molecules were used to create Langmuir-Blodgett films containing reactive silanol groups that have potential use as sensors and coatings. The uptake and reactivity of organophosphonates and chlorophosphates on these surfaces is the focus of this study.

Surfaces were characterized before and after exposure to the phosphates using a number of surface sensitive techniques including: contact angle goniometry, reflection-absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD) measurements. In conjunction with surface probes, uptake coefficients were monitored according to the King and Wells direct reflection technique. The integration of these analytical techniques provides insight and direction towards the design of more effective chemical agent resistant coatings and aids in the development of more functional strategies for chemical warfare agent decontamination and sensing.

Description
Keywords
chemical warfare agent simulant, trisilanolphenyl-polyhedral oligomeric silsesquiox, self-assembled monolayers, Langmuir-Blodgett film, carbamate, organophosphonate
Citation