VTechWorks staff will be away for the Thanksgiving holiday starting Wednesday afternoon, Nov. 25, through Sunday Nov. 29, and will not be replying to requests during this time. Thank you for your patience.

Show simple item record

dc.contributor.authorHenderson, Darrallen_US
dc.date.accessioned2014-03-14T20:09:49Z
dc.date.available2014-03-14T20:09:49Z
dc.date.issued2001-05-13en_US
dc.identifier.otheretd-04172001-135808en_US
dc.identifier.urihttp://hdl.handle.net/10919/26926
dc.description.abstractIdentifying a globally optimal solution for an intractable discrete optimization problem is often cost prohibitive. Therefore, solutions that are within a predetermined threshold are often acceptable in practice. This dissertation introduces the concept of B-acceptable solutions where B is a predetermined threshold for the objective function value. It is difficult to assess a priori the effectiveness of local search algorithms, which makes the process of choosing parameters to improve their performance difficult. This dissertation introduces the B-acceptable solution probability in terms of B-acceptable solutions as a finite-time performance measure for local search algorithms. The B-acceptable solution probability reflects how effectively an algorithm has performed to date and how effectively an algorithm can be expected to perform in the future. The B-acceptable solution probability is also used to obtain necessary asymptotic convergence (with probability one) conditions. Upper and lower bounds for the B-acceptable solution probability are presented. These expressions assume particularly simple forms when applied to specific local search strategies such as Monte Carlo search and threshold accepting. Moreover, these expressions provide guidelines on how to manage the execution of local search algorithm runs. Computational experiments are reported to estimate the probability of reaching a B-acceptable solution for a fixed number of iterations. Logistic regression is applied as a tool to estimate the probability of reaching a B-acceptable solution for values of B close to the objective function value of a globally optimal solution as well as to estimate this objective function value. Computational experiments are reported with logistic regression for pure local search, simulated annealing and threshold accepting applied to instances of the TSP with known optimal solutions.en_US
dc.publisherVirginia Techen_US
dc.relation.haspartHenderson_D_Dissertation.pdfen_US
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjecthill climbing algorithmsen_US
dc.subjectheuristicsen_US
dc.subjectfinite-time performanceen_US
dc.subjectdiscrete optimizationen_US
dc.subjectcombinatorial optimizationen_US
dc.subjectsimulated annealingen_US
dc.subjectconvergenceen_US
dc.subjectlocal searchen_US
dc.titleAssessing the Finite-Time Performance of Local Search Algorithmsen_US
dc.typeDissertationen_US
dc.contributor.departmentIndustrial and Systems Engineeringen_US
dc.description.degreePh. D.en_US
thesis.degree.namePh. D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
thesis.degree.disciplineIndustrial and Systems Engineeringen_US
dc.contributor.committeememberWakefield, Ronald R.en_US
dc.contributor.committeememberBish, Ebru K.en_US
dc.contributor.committeememberSherali, Hanif D.en_US
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-04172001-135808/en_US
dc.contributor.committeecochairJacobson, Sheldon H.en_US
dc.contributor.committeecochairKoelling, C. Patricken_US
dc.date.sdate2001-04-17en_US
dc.date.rdate2002-04-18
dc.date.adate2001-04-18en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record