## Semiparametric Methods for the Generalized Linear Model

##### Abstract

In the first part of this dissertation, since most of the literature on the GLM deals with the parametric random component, we relax the parametric distribution assumption for the random component of the GLM and impose a log-concave constraint on the distribution. An iterative numerical algorithm for computing the estimators in the SGLM-L is developed. We construct a log-likelihood ratio test for inference. In the second part of this dissertation, we use a single index model to generalize the GLMM to have a linear combination of covariates enter the model via a nonparametric mean function, because the linear model in the GLMM is not complex enough to capture the underlying relationship between the response and its associated covariates. The marginal likelihood is approximated using the Laplace method. A penalized quasi-likelihood approach is proposed to estimate the nonparametric function and parameters including single-index coeÂ±cients in the GSSIMM. We estimate variance components using marginal quasi-likelihood. Asymptotic properties of the estimators are developed using a similar idea by Yu (2008). A simulation example is carried out to compare the performance of the GSSIMM with that of the GLMM. We demonstrate the advantage of my approach using a study of the association between daily air pollutants and daily mortality adjusted for temperature and wind speed in various counties of North Carolina.

##### Collections

- Doctoral Dissertations [11305]