Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dd34e Dna Transposable Elements of Mosquitoes: Whole-Genome Survey, Evolution, and Transposition

    Thumbnail
    View/Open
    Coy_Dissertation_2007_11.pdf (3.016Mb)
    Downloads: 179
    Date
    2007-06-13
    Author
    Coy, Monique Royer
    Metadata
    Show full item record
    Abstract
    Transposable elements (TEs) are mobile genetic elements capable of replicating and spreading within, and in some cases, between genomes. I describe a whole-genome analysis of DD34E TEs, which belong to the IS630-Tc1-mariner superfamily of DNA transposable elements, in the African malaria mosquito, Anopheles gambiae. Twenty-six new transposons as well as a new family, gambol, were identified. The gambol family shares the DD34E catalytic motif with Tc1-DD34E transposons, but is distinct from these elements in their phylogenetic relationships. Although gambol appears to be related to a few DD34E transposons from cyanobacteria and fungi, no gambol elements have been reported in any other insects or animals thus far. This discovery expands the already expansive diversity of the IS630-Tc1-mariner TEs, and raises interesting questions as to the origin of gambol elements and their apparent diversity in An. gambiae. Several DD34E transposons discovered in An. gambiae possess characteristics that are associated with recent transposition, such as high sequence identity between copies, and intact terminal-inverted repeats and open reading frames. One such element, AgTango, was also found in a distantly related mosquito species, Aedes aegypti, at high amino acid sequence identity (79.9%). It was discovered that Tango transposons have patchy distribution among twelve mosquito species surveyed using PCR as well as genomic searches, suggesting a possible case for horizontal transfer. Additionally, it was discovered that in some mosquito genomes, there are several Tango transposons. These observations suggest differential evolutionary scenarios and/or TE-host interaction of Tango elements between mosquito species. This strengthened the case that AgTango may be a functional transposase, and I sought to test its potential activity in a cell culture-based inter-plasmid transposition assay using the Herves plasmids as a positive control (Arensburger et al., 2005). AgTango constructs were successfully constructed; however, no transposition events were detected for Tango or Herves. Because the positive control failed to work, no assessment can be made concerning Tango's transposase. Possible causes and solutions for these results, alternative means to detect transposition, as well as future directions with Tango are discussed.
    URI
    http://hdl.handle.net/10919/28120
    Collections
    • Doctoral Dissertations [14205]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us