Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Motion Planning and Robust Control for Nonholonomic Mobile Robots under Uncertainties

    Thumbnail
    View/Open
    KanaratETD.pdf (1.841Mb)
    Downloads: 263
    SourceCodes.pdf (47.41Kb)
    Downloads: 58
    Date
    2004-05-10
    Author
    Kanarat, Amnart
    Metadata
    Show full item record
    Abstract
    This dissertation addresses the problem of motion planning and control for nonholonomic mobile robots, particularly wheeled and tracked mobile robots, working in extreme environments, for example, desert, forest, and mine. In such environments, the mobile robots are highly subject to external disturbances (e.g., slippery terrain, dusty air, etc.), which essentially introduce uncertainties to the robot systems. The complexity of the motion planning problem is due to taking both nonholonomic and uncertainty constraints into account simultaneously. As a result, none of the conventional nonholonomic motion planning can be directly applied. The control problem is even more challenging since state constraints posed by obstacles in the environments must also be considered along with the nonholonomic and uncertainty constraints. In this research, we systematically develop a new type of motion planning technique that determines an optimal path for a mobile robot in a given environment. This motion planning technique is based on the idea of a maximum allowable uncertainty, which is a number assigned to each free configuration in the environment. The optimal path is a path connecting given initial and goal configurations through a series of configurations respecting the nonholonomic constraint and possessing the highest maximum allowable uncertainty. Both linear and quadratic approximations of the maximum allowable uncertainty, including their corresponding motion planners, have been studied. Additionally, we develop the first real-time robust control algorithm for the mobile robot under uncertainty to follow given paths safely and accurately in cluttered environments. The control algorithm also utilizes the concept of the maximum allowable uncertainty as well as the robust control theory. The simulation results have shown the effectiveness and robustness of the control algorithm in steering the mobile robot along a given path amidst obstacles without collisions even when the level of robot uncertainty is high.
    URI
    http://hdl.handle.net/10919/28316
    Collections
    • Doctoral Dissertations [15818]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us