Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of Environmentally Friendly Non-Chrome Conversion Coatings for Cold-Rolled Steel

    Thumbnail
    View/Open
    Title-Abstract.pdf (77.69Kb)
    Downloads: 87
    Acknowledgments.pdf (53.50Kb)
    Downloads: 111
    Contents.pdf (277.8Kb)
    Downloads: 115
    Chapter1.pdf (909.9Kb)
    Downloads: 472
    Chapter2.pdf (609.1Kb)
    Downloads: 149
    Chapter3.pdf (1.137Mb)
    Downloads: 695
    Chapter4.pdf (1.078Mb)
    Downloads: 227
    Chapter5.pdf (90.43Kb)
    Downloads: 33
    Vita.pdf (50.85Kb)
    Downloads: 47
    Date
    2003-07-30
    Author
    Zhang, Jinming
    Metadata
    Show full item record
    Abstract
    Steel producers use various organic and inorganic coatings to protect cold-rolled steel (CRS) sheets from corrosion during shipment and storage. It is well known that CRS sheets can be protected from corrosion by galvanizing, phosphating, chromating, topcoating with organic, or their combinations. The chromate rinsing is particularly effective for preventing white rusting of galvanized steel. But there is an increasing interest in a replacement for the chromating process because of environmental and health concerns. The objective of the present work is to develop a chrome-free conversion coating for steel sheets. Various carboxylic acids and their salts have been studied for coating phosphated electrogalvanized (EG) steel sheets, including 10-undecenoic acid (UA), oleic acid (OA), and other fatty acids such as stearic acid (SA) and palmitic acid (PA). When they were used alone, or subsequently coated with resin, they could produce a highly hydrophobic surface and improve the corrosion resistance. Thiols such as 1-octadecanethiol (ODT) can form a self-assembled monolayer on metal substrates. This close-packed monolayer could provide an excellent corrosion resistance for EG steel sheets. It was capable of withstanding 50~60 hours of salt spray test (SST) although its thickness was only a few nanometers. The EG steel itself usually started rusting only after 2~4 hours of salt spray. In another coating system, thiols were mixed with a conventional resin to improve the corrosion resistance of EG steel. This new technique gave 100~120 hours of corrosion resistance. When the resin was applied directly on EG steel surface, its corrosion resistance was less than 72 hours. It was shown that further optimization of this technique increased the corrosion resistance to 200 hours and more in the standard SST.
    URI
    http://hdl.handle.net/10919/28803
    Collections
    • Doctoral Dissertations [14870]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us