Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mathematical Models of Some Signaling Pathways Regulating Cell Survival and Death

    Thumbnail
    View/Open
    tonglidisnov19.pdf (3.728Mb)
    Downloads: 123
    Date
    2008-10-23
    Author
    Zhang, Tongli
    Metadata
    Show full item record
    Abstract
    In a multi-cellular organism, cells constantly receive signals on their internal condition and surrounding environment. In response to various signals, cells proliferate, move around or even undergo suicide. The signal-response is controlled by complex molecular machinery, understanding of which is an important goal of basic molecular biological research. Such understanding is also valuable for clinical application, since lethal diseases like cancer show maladaptive responses to growth-regulating signals. Because the multiple feedbacks in the molecular regulatory machinery obscure cause-effect relations, it is hard to understand these control systems by intuition alone. Here we translate the molecular interactions into differential equations and recapture the cellular physiological properties with the help of numerical simulations and non-linear dynamical tools. The models address the physiological features of programmed cell death, the cell fate decision by p53 and the dynamics of the NF-?B control system. These models identify key molecular interactions responsible for the observed physiological properties, and they generate experimentally testable predictions to validate the assumptions made in the models.
    URI
    http://hdl.handle.net/10919/29443
    Collections
    • Doctoral Dissertations [14209]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us