Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Metal/polymer interactions in polyimide adhesives

    Thumbnail
    View/Open
    LD5655.V856_1995.E455.pdf (31.27Mb)
    Downloads: 3650
    Date
    1995-04-15
    Author
    Ellison, Matthew M.
    Metadata
    Show full item record
    Abstract
    Due to their superior thermal and chemical stability, polyimides are often used as adhesives in hazardous environments. This study examines the effect of thioether sulfur in the polyimide backbone on bond strength. X-ray photoelecton spectroscopy (XPS) and reflectance infrared spectroscopy indicated that certain metals catalyze the oxidation of the thioether sulfur. It was believed that this oxidation could lead to direct metal-oxygen-sulfur bonds across the polymer/metal interface which would serve to enhance interfacial strength. Bonds were made using substrates that were believed to catalyze the oxidation strongly (steel) and minimally (aluminum). In addition, non-sulfur containing polyimides with similar Tg were also studied for comparison. The polymer/metal interface was studied using both the T-peel and wedge tests. In some cases, oxidized sulfur was detected on the failed surfaces via XPS. No apparent effect was observed in the T-peel test, where the T-peel strengths of non-sulfur and sulfur containing polyimides were similar. In the wedge test, however, the sulfur containing BDSDA/ODA bonded to steel had an initial crack length of 34 mm. Even after eleven days the crack length was only 47 rnm, which was the initial crack length for the next best polyimide. Thus, metal-catalyzed oxidation of sulfur did take place, but not to an extent to have a noticeable effect on peel strength.
    URI
    http://hdl.handle.net/10919/29500
    Collections
    • Doctoral Dissertations [14857]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us